学年

質問の種類

数学 中学生

教えて欲しいです💦🙇‍♀️

次のにあてはまることばや数、 式を書き入れなさい。 ( 60点 各5点、 知) (1) 正しくつくられたさいころでは、1から6までのどの目が出ることも、 同じ程度に期待することができる。 このよ うなとき、 1から6までのどの目が出ることも (ア) という。このさいころを投げる とき、目の出方は全部で (イ) 通りあり、 このうち、4の目が出る場合は1通りであるから、確率は (ウ) と考えることができる。 また、 素数の目が出る確率は (エ) である。 (2) 起こりうる場合が全部でn通りあり、 どの場合が起こることも (ア) とする。 その うち、ことがら A の起こる場合がα通りあるとき、 ことがらAの起こる確率をすると (オ) p = となる。 (カ) また、確率』の値の範囲は ≤ p ≤ である。 (3) 10本のくじの中にあたりが3本はいっている。 このとき、 はずれのくじをひく確率は (キ) である。 (4) ジョーカーを除く52枚のトランプから1枚を取り出すとき、 A (エース) のカードが出る確率は (コ) (ケ) (ハート)のカードが出る確率は ジョーカーのカードが出る確率は である。 (ク) (5) 袋の中に、 赤玉3個、 青玉2個、 白玉1個が入っている。 この袋の中から玉を1個取り出すとき、青玉の出る確率 (サ) は である。 また、 赤玉または青玉または白玉の出る確率は (シ) である。 2 A、B、Cの3枚の硬貨を同時に投げるとき、 次の問いに 答えなさい。 (15点 各5点 知) 3 さいころを続けて2回投げるとき、 次の問いに答え なさい。 (25点 各5点、 知) (1) 表と裏の出方は全部で何通り あるか。 樹形図をかいて求めよ。 (樹形図) (1) 起こりうるすべての場合は何通りあるか求めよ。 (2)出る目の数の和が8になる確率を 求めよ。 (3) 出る目の数の積が6以上になる確 率を求めよ。 (4)2回とも偶数の目が出る確率を求 めよ。 ■ 表が1枚、 裏が2枚出る確率を求めよ。 (5) 1回目の出た目の数の方が2回目 に出た目の数より大きくなる確率を 求めよ。

未解決 回答数: 1
数学 高校生

数Ⅱ黄チャート 高次方程式 基本例題62を別解2の方法で解かなきゃいけないんですけど、解き方を忘れてしまったので、解説お願いします🙇

104 基本 例題 62 解から係数決定 (虚数解) 00000 3次方程式 x+ax²+bx+10=0 の1つの解がx=2+i であるとき, 実数 の定数α, bの値と他の解を求めよ。 (山梨学院大 p.98 基本事項2.基本61 解 CHART & SOLUTION x=αがf(x)=0の解⇔f(α) = 0 代入する解は1個(x=2+i) で, 求める値は2個 (αとb) であるが, 複素数の相等 A, B が実数のとき A+Bi=0 A = 0 かつ B=0 により,a,bに関する方程式は2つできるから, a,bの値を求めることができる。 また,実数を係数とするn次方程式が虚数解αをもつとき,共役な複素数も解であるこ とを用いて,次のように解いてもよい。 別解 2αとが解であるから, 方程式の左辺は (x-α)(x-2) すなわち x-(a+α)x+a で割り切れることを利用する。 別解 3 3つ目の解をkとして, 3次方程式の解と係数の関係を利用する。 x=2+iがこの方程式の解であるから ここで, (2+i=2°+3・2'i+3.2i+i=2+11i, (2+i)+α(2+i)+6(2+i) +10=0 (2+i)=22+2・2i+i=3+4i であるから 2+11i+α(3+4i)+6(2+i) +10=0 iについて整理すると 3a+26+12,4α+6+11 は実数であるから 3a+26+12+(4a+6+11)i = 0 3a+2b+12=0, 4a+b+11=0 これを解いて a=-2,b=-3 ゆえに、方程式は x-2x2-3x+10=0 f(x)=x-2x2-3x +10 とすると f(-2)=(-2)-2-(-2)2-3-(-2)+10=0 よって, f(x) は x+2 を因数にもつから f(x)=(x+2)(x²-4x+5) したがって, 方程式は (x+2)(x-4x+5)=0 x+2=0 または x2-4x+5=0 x2-4x+5=0 を解くと x=2±i よって, 他の解は x=-2, 2-i 別解 1 実数を係数とする3次方程式が虚数解 2+i をもつ から,共役な複素数 2-iもこの方程式の解である。 よって,x+ax²+bx +10 は{x-(2+i)}{x-(2-i)} すなわち x4x+5で割り切れる。 mfx-2=i と変形して 両辺を2乗すると x2-4x+5=0 これを利用して x+ax²+bx+10の次数を 下げる方法 (別解 1の3行 目以降と同じ) もある。 (p.93 基本例題 55 参照) この断り書きは重要。 A, B が実数のとき A+Bi=0 ⇔ A=0 かつ B=0 ← 組立除法 1-2-3 10-2 -2 8-10 1-4 50 の部分の断り書きは 重要。

回答募集中 回答数: 0