学年

質問の種類

数学 高校生

1枚目の写真の青い丸で囲っている問題のツについての質問です。2.3枚目の写真のように計算したのですが答えが合いませんでした。どこが違うか教えてください。回答よろしくお願いします。(答えは赤丸のところです。)

362023年度 数学(解答) <解説> <複素数の表す図形, 整数問題≫ laz+1 ►(1) z+α 慶應義塾大 - 理工 =2|az+1=2|z+α| ....・・ ① かつ z≠-a (複素数 αは±1ではない) ①において, z= -α とすると, - +1=0 より α = ±1 となり, 条件を 満たさない。 したがって, z≠-α は ①に含まれるので,①を考察すれば よい。 |a|=2 →(チ) のときは|al/z+2=2|z+α すなわち となり、この等式を満たす点全体からなる図形Cは直線となる(2g -a, 1を結ぶ線分の垂直二等分線)。 次に①の両辺を平方して式変形をする。 |az+1=22|z+α| (az+1)(az+1)=4(z+α) (z+α)( (az + 1) (az+1)=4(z+α) (z+α) aazz+az+az+1=4 (zz+az+az+aa) |a|°/z+αz+αz+1=4|z|+4az+4az+4|2 (a-4)2+(a−4a) z+(a-4a) z+1-4|a|=0......2 したがって, |α|≠2のとき a-4a +- -z+ 070a-4 la-4 1-4/a =0 lal²-4 a-4a zz+ a-4a z+ la-4 a²-41 z+ 4/21-4/ -=0 la-4 (2+i a-4a a-4a la-4a 1-4a² + ++ = (la²-4)2 la-4 Tal²- a-4a la-41 (a-4a) (a-4a) (1-4a) (a-4) la-4a²-4a²+16|a²-a²+4+4a-16a² (la-4)2 (la-4) la-4 (la²-4)2 慶應義塾大理工 .. a-4a 4-la 2023年度 数学 <解答> 37 4\a\'-4a²-4a²+44 (a²-1) (a²-1) (la-4)2 (la²-4)² 4 (a2-1) (a²-1) 4a²-112 (la²-4)2 (la-4)2 a²-1 a²-4 よって, α ≠2のとき, ①を満たす点 全体からなる図形Cは円となり 中心は a-4a →(ツ) 4-a730 a²-1 半径は 2 ||a|²-4 である。 直線Cは, |α| =2のときの②より (a-4a) z + (a-4a) z=15 虚 軸 ABz O 15 実軸 2 と表される。 α-4α =β (≠0) とおくと Bz+Bz=15 ..(ßzの実部)= 15 2 したがって, Bz の表す直線は、 15 2 を通り,実軸 り に垂直な直線である。 よって, Bz の最小値は - 15 である。 2 15 15 B 228 (B=0) ここで、等号が成り立つのは,(ßzの虚部)=0のときであるから +15 Bz= 15 すなわち z= (β≠0) 20 2B のときである。したがって, la =αα=4を用いて,求めるは 15 15 15 15a z= = (テ) 2B 2(a-4a) できる。 2 (a2-16) 2(a-16) (4)( である。 別解 (1) アポロニウスの円の知識を用いる方法> |αz+1|=2|z+α| ...... ① 14 2023年度 数学 慶應義塾大 理工 慶應義塾大 理工 5 OA Mon (1) αを±1ではない複素数とする。 複素数平面上で az+1 =2を満たす点 全体から z+α なる図形をCとする。 Cはαが (チ)を満たすとき直線となり,(チ)を満たさない (ツ) とき円となる。αが (チ)を満たさないとき 円Cの中心をαを用いて表すと となるαが(チ)を満たすとき, 直線C上の点zのうち、 その絶対値が最小となるもの をαを用いて表すと (テ) となる。 【物理 (2科目120分) 2023年度 物理 15

解決済み 回答数: 1
数学 高校生

数II、二項定理による証明に関する質問です 赤でラインを引いた部分について、丸をつけたnCrのところが書かれているのは、そもそもの問題と比較した時に証明する等式にもnCrが含まれているからで合っていますか? それともなにか理由があるのでしょうか? 塾の教材には2枚目の①の... 続きを読む

基本5 二係数と式の証明 (1) 19 00000 (822-1.2... n) が成り立つことを証明せよ。 (2)(140)"の展開式を利用して、次の等式を証明せよ。 (1) Co-C1+Ca C-C+2,C,.....+(-2)",C.+....+(-2)"C"=(-1)" (1)C +(-1) C++ (-1)".C.-0 p.13 基本事項 を利用して、 kC をそれぞれ変形する。 10 (2)定理(.13基本事項■)において、 a1bx とおくと 3次式の展開と因数分解、二項定理 (1+x)^=.C+CistaCoナ・・・・・・+C++C ****** ① 挙式のと、与式の左を比べることにより、①の両辺でx=1 とおけばよいこと に気づく。同様にして、(f)()ではに何を代入するかを考える。 (U) A.C.-A. (一) 解答 (n-1)! (k-1)!(n-k)! (-1)! R-CA-1- (1)1((n-1)(A-1)}! したがって RaCa=-1-1 4n!-n(n-1)! (n-1)! (k-1)!(n-k! すべてのxの値に対して成り立つ。 ① (2)二項定理により、次の等式①が成り立つ。 (1+x)"=Cat.Cix+++CsJ......Cax* (ア)等式① で, | とおくと (1+1)=,Co+C11+1+......+.+......+C・1" よって Co+++......+C+....+Ca=2" (イ)等式①で、x=-1とおくと (1-1)"=C+C (-1)+(-1)*+....+C (-1)+..+.C.(-1)* よって Co-C+C+(-1) Cy+....+(-1)",C,=0 (ウ)等式①で、x=-2とおくと (1-2), Co+ C (-2)+2(-2)+....+°C, (-2)"'+....+C (-2) Co-2,C,+2,C2......+(-2)"C,+......+(-2)",C=(-1)* よって 素数とするとき (1) から RCx=poCi-l(p≧2;k=1,2,,p-1) この式はC が必ず』で割り切れることを示している。 次の等式が成り立つことを証明せよ。 5 -+-+(-1)*1 2" 2" (2)が奇数のとき Cot,C2+....+.+.+....+, Co=20-1 (3)nが偶数のとき Cat,C+....+....+aCa-1=24 P.23 EX3、

解決済み 回答数: 1