学年

質問の種類

数学 高校生

(2)は 4分の7π はダメですか?

520 9/04 基本 100 複素数の乗法と回転 0000 (1) z=2-6i とする。 点ぇを, 原点を中心として次の角だけ回転した点をおい 複素数を求めよ。 (4) 6 (1) 一 (2)(1-1)は,点zをどのように移動した点であるか。 指針 a=r(cos 0+isin0) 2 0EE 点は、点を原点を中心としてだけ回転し、 原点からの距離を倍した点である。 (特に,r=1のときは回転移動のみである。) このことを利用する。 (1) 絶対値が1で、偏角がや 掛ける。 (2)1-iを形式で表す。 yo (*) やー とした である複素数をzに かかれて いないから品 CHART 原点を中心とする角0の回転 r(cosO+isin0) を掛ける 回転だけならr=1 キョリは (1) 求める点を表す複素数は 解答 (cos/0/+isin)== (2+1/12 (26) =√3-3√3iti+3 =3+√3+ (1-3√3) i (4) {cos(−)+isin(−)}z=−i(2–6i) (2) (1-i)z=√2 ( =√2 (cos(-7)+isin(-4) 2 よって, 点 (1-izは,点zを =(√3+i) (1-3) =-6-2i ye O 注意 (2) と同様に考え 1-i ・・・原点中心の iz・・・ 原点中心の I 元は? 44 原点を中心として-7 だけ回転 -z・・・ 原点中心の し、原点からの距離を2倍した点である。 であることが導かれ [練習 ① 100 (1) z=2+4i とする。 点z を, 原点を中心として 2 -πだけ回転した 3 素数を求めよ。 (2)次の複素数で表される点は,点2をどのように移動した点である (ア) -1+i 2 √2 Z 1-√3i (ウ)

未解決 回答数: 1
数学 高校生

ヵが分かりません。 1枚目に記載してる写真を見て欲しいのですが、そこにシャーペンで書いてある①??と②??を教えて欲しいです。 なぜ成り立つのか分かりません

① 異なる素数 p q r を用いて 以上より、nが最大となるのはn=12のときであ り, n=12となるのは (i) より 23x32=72 25x3 = 96 (Ⅲ)より 22×3×5=60 22×3×7=84 2×32×5=90 であるから,全部で5個ある。 第5問 (1) APC は, △APC を点Cのまわりに時計回り に60° だけ回転移動した三角形であるから したがって AA'P'C=AAPC AP = A'P' B C (2)時計回りに回転移動する角が 60°のとき. △ACAは正三角形となるから, AA' = AC は成 り立つ。しかし、時計回りに回転移動する角が 60° でないときには,AA'ACは成り立たないこと がある。 ①④ 時計回りに回転移動する角の大きさによら ず△APC APC であるから, AC = A'C, CP=CPは成り立つ。 ②③時計回りに回転移動する角が60°のときに も, AP = AP', APPP'は成り立たないことが ある。 A'D' LAB であるから、APP ABPPは合同な正三角形 である。 よって ∠APB= ∠CQD=60°+60° = 120° ② <BPP=60° より ∠APP=60°であるから AP = BP=CQ=DQ より =1/AB = 4√3 3 1 sin 60° ? PQ=4-2BP cos60°=4- AP + BP + PQ + CQ + DQ 4√3 -4 +4 - 4/3 3 =4+4√3 A 4√3 CP = CP ② ② および P'CP = 60° より, △PCPは正三角形 であるから CP = PP' ③ よって、 ① ③より AP + BP + CP = A'P′ + BP + PP′ ④ A' P ⑤ 時計回りに回転移動する角が 60°のとき, △PCPは正三角形となるから, CP = PP'は成り 立つ。 しかし、時計回りに回転移動する角が60°で ないときには, CP = PP' は成り立たないことがあ る。 ➡0, ⑤ (3) 次の図のように, ABP を点Bのまわりに反 時計回りに 60°回転移動した三角形を A'BP/ △DQC を点Cのまわりに時計回りに 60°回転移動 した三角形を DQO とする。 P P A' B B -C A' 点Pの位置が変化すると,それに応じて点P'の 位置も変化するが, 点Bと点 A' の位置は変化し ない。 B D' よって, 2点P, P' が直線 A'B 上にあることが あれば、そのときに AP + BP + CPは最小となる。 ③ △PCPは正三角形であるから, 4点 A', P', P, Bが一直線上にあるとき ∠BPC = 180°-∠P'PC = 120° ④ ここで, △ABC は鋭角三角形であり, 内角はすべ 120° よりも小さい。 したがって、点Pは確かに △ABC の内部にある。 (1)と同様に考えて AP + BP + PQ + CQ + DQ =AP + PP + PQ + QQ + QD] であるから, 4点 P', P, Q, Q' が直線 A'D'上に あるときに AP + BP + PQ + CQ + DQ は最小と なる。 △PPB, QCQ' は正三角形であるから, 6点 A', P', P, Q, Q', D' が一直線上にあるとき AAA'BADD'C である。 さらに,正方形と正三角形の対称性より -③-9-

回答募集中 回答数: 0