学年

質問の種類

数学 高校生

(2)を解答とは違う、垂直条件を二回使って連立方程式を作る解き方をしましたが、2枚目の右下のbの値が違います。どこで間違えたのでしょうか。 何回も見直しましたが、どこで間違えているかわかりませんでした…

• 10 外心 三角形ABCの3辺の長さをAB=4, BC=3, CA=2 とする.この三角形の外心を0とおく. (1) ベクトル CA と CB の内積 CA・CB を求めよ. (2) CO=aCA + 6CB をみたす実数 α, b を求めよ. 外心の求め方 外心の定義 (OA=OB=OC) を用いて求めてみよう. 例題では|OA|=|OB2=|OC|2 を CA, CB, a, b で表して a, b を求め ればよいのであるが,素直にOA=CA-CO=(1-4) CA-6CBとして 計算すると式が膨れてしまう. (信州大・理一後) |OA|=|CA-CO|=|CA|2-2CA・CO4 | CO 2 としておくことがポ イントで,これがCO2に等しいことから2CA・CO-|CA | となる。 これに CO=aCA+bCB を代入する(aとbの関係式が得られる)。 0 B 同様に|OB|=|OCからもαとの関係式が得られ,この連立方程式を解けばよい. 解答 (1)|CA-CB|=|BA|2であるから, |CA2-2CA・CB+|CB|=|BA|2 ..22-2CA・CB+32=42 CA·CB= 22+32-42 2 3 == 2 e CA ACT=0 A (2) 0から A, B, Cまでの距離が等しいので, |OA|=|OB|=|OC|2 ..|CA-CO|=|CB-CO|=|CO|2 .. |CAP-2CA・CO+|CO|=|CB|2-2CB・CO+|CO|=|CO|2 最左辺 =最右辺, 中辺=最右辺より, 2CA·CO=|CA|2, 2CB・CO=|CB|2 これらにCO=CA+6CB を代入すると, 2(a|CA2+6CA•CB)=|CA|2, 2 (aCA•CB+6|CB|2)=|CB |2 (1)で求めた値などを代入して, 3 2{a·4+6 (-2)}-4, 2{a⋅(-1)+6-9)=9 ∴.8a-3b=4 .......... ①, -3a+186=9 ②÷3よりa=66-3...... ③ で,これを①に代入すると 8(66-3)-3b=4 28 .. 45b=28 .. b = 45 28 11 これを③に代入して, α=6· -3= 45 15 COR=0 C. (c) 問題文の CA, CB を見て,Cを 始点に書き直す。 =0 CA (CA - PCA + CD) - CAP) CA +&CB=0 この式は次のようにして導くこ ともできる. 2 A 0 CACO=CA・CO・cos/Cである. 0 から CAに下ろした垂線の足を Hとすると,HはCAの中点で Cocos ∠C=CH=CA/2 よって, CA·CO=CA·CH=CA2/2 CB・COも同様. 10 演習題(解答は p.27 ) △ABC において AB = 1, AC=2と1 /BAC=

回答募集中 回答数: 0
現代文 高校生

問10 ④ 問11 ③,⑤ 問12 ①,④ について解説お願いします!🙏💦 答えは上から、1,4,3です。

的に成立 (2023AG-F-10) ほない。 解釈されて れるもので ~⑤のう 一国 11- わかりやすい。 第二問 次の文章を読み、設問 問1~問12)に答えよ。 理系の学問については、高度な計算や化学実験やプログラミングができるようになって新しいものを設計することが可能に なったり、機械や人体の構造やメカニズムについて正確に理解することで問題が起こった場合の対処ができるようになったりす るなど、その学問を修めることでどのような能力が得られて、そこからどのような価値を生み出せるようになるかは、 A それに比べると、人文学を修めた人が得られる能力とそれによって生み出される価値とは、曖昧にしか論じられないものである。 また、理系の学問によって得られる能力が 一的なものであることが多い一方で、文系の学問によって得られる能力 は「批判的思考」であったり「想像力」であったりと、存在を証明することが難しいものである点も厄介だ。 ある人がどのよう な技術を身につけているかについては、その技術に対応する課題に取り組んでそれを解決することで客観的に証明することがで きるが、想像力や批判的思考についてはそういうわけにはいかない。 さらには、高度な技術はどこかでそれを学ばなければ習得することが不可能である一方で、批判的思考や想像力は、それ自体 は大半の人にもとから備わっているものである。 人文学を学ぶことはこれらの能力を深めさせてはくれるが、人文学を学ばなく 優れた批判的思考や想像力を発揮できる人はいるだろうし、その逆の場合もあるだろう。 人文学は、せいぜいが「涵養」と いう程度のはたらきしかできないかもしれない。 それでは、人文学は社会に対してどのような貢献をしており、どのように役に立っているのか? 幾人かの論者が指摘しているのは、「民主主義が健全に機能するためには、一定数以上の市民が人文学に触れて、批判的思考 や想像力を適切に培わなければならない」ということである。 (注1)みたになおずみ たとえば、日本の哲学者である三谷尚澄は、著書 『哲学しててもいいですか? 文系学部不要論へのささやかな反論」のなか で、哲学を学ぶことの意義は批判的思考とともに「箱の外に出て思考する力」を養うことである、と論じている。 かんよう (2023AG-F-12) 一国 13-

解決済み 回答数: 1
数学 高校生

演習15で、両辺に√nをかけた不等式について、n=kの時に両辺に√(k+1)を加えて証明しようと思いました。(今まで解いていた問題だとこのような解き方でしたので…) そうしたら3枚目の最後の式から0以上であることを言えないために、証明できませんでした。 みなさんはどの時点... 続きを読む

3 となるので,①は成り立つ。 1 1 +... + <2- 12 22 ne n 1 n=2のとき, 1 + 5 12 4 22 , 1 = 2- 2 2 n=k(k≧2) のとき, ①が成り立つとすると, 1 1 1 ・+・・・+ <2- 12 22 k2 k ①でn=k+1とした式 1/3+/12/2++//+(k+1)= 1 1 1 <2 3 k+1 を②から導けばよい. ここで,②③の左辺どうし,右辺どうしの差を不等号で結ぶと, (k+1)2 < (2-1+1)-(2-1) 4 ④が成り立つことが示せれば, ② + ④ から ③ を導くことができる.そこで, ④ を示すことを目標にする. そのためには, (④の右辺) (④の左辺) > 0 を示せ ばよい. = (2)-(2)-(1) (k+1)2-k(k+1)-k k(k+1)2 1 1 1 1 k k+1 (k+1)2 1 >O k(k+1)2 よって、 ①は数学的帰納法によって証明された. 注②の両辺に 1 (k+1)2 を加えると, 1 1 1 12 + +…+ + 22 k2 1 (k+1)2 1 <2- + k (k+1)2 1 1 これから 2 + <2- k (←④) を示せばよいとしても (k+1)2 k+1 よい。 15 演習題 ( 解答は p.78) ← ③の左辺は、②の左辺に 1 (k+1)2 を足したものなので ②と③の差に着目する. <a<bかつc <d ⇒ atc<b+d という不等式の性質を用いている。 1+√2+√3+√m 数列 {a} を am= で定める.このとき, すべての自然数nに n 2n 3 ついて、不等式 2/ <a が成り立つことを,数学的帰納法によって証明せよ。 帰納法の使いやすい形に (信州大・医一後) して証明する. 70

解決済み 回答数: 1
数学 高校生

解答とは違う解き方で解きましたが、(2)の答えが合いません。×2が足りないそうですが、どこで間違えたのでしょうか。

92項間漸化式/an+1=pan+f(n) - 次の式で定められる数列の一般項 4 を求めよ. (1) a=1, n+1=20n+n (n=1,2,3, ...) (2) a1=4,n+1=40-2"+1 (n=1, 2, 3, ...) (弘前大・理工-後) (信州大工) 型の漸化式を解く 2項間漸化式の解き方 an+1=pan+f(n) (p=0.1:f(n)はnの式) には、変形して+1+g(n+1)=plan+g(n)}となるようなg(n) を見つけて, {an+g(n)}が等比 数列になることを用いればよい (i) f(n)がnの多項式の場合,g(n)もf(n)と次数が等しいnの多項式である。g(n)の係数を 未知数とおいて,☆より係数を求めればよい。 特にf (n) が定数の場合は前頁で扱った. (ii) f(n)=Aq" (g≠p, A は定数) の場合,g(n)=Bg”として, が成り立つように定数Bを定め an+1 an ればよい.また,an+1= pan+Ag" の両辺を"+1で割って, +A p" +1 (2)². ここで, an A bn とおいて, bm+1=bn+ として階差型の解き方 (前頁)に持ち込む手でもよい。 P 解答 (1) an+1+A(n+1)+B=2(an+An+B) を満たす A, B を求める. an+1=2an+An+B-A と条件式を比べて, A = 1, B-A=0 :.B=1 an+1+(n+1)+1=2(a+n+1)より,{an+n+1}は公比2の等比数列. よって, an+n+1=2"-1 (Q1+1+1)=3·2"-1 .. an=3.2"-1-n-1 左辺はA(n+1) になることに注 意. (2) +1=44-2n+1 を 4n+1で割って an+1 an 1+1 4n+1 an 4" 2 \+1 == 4" bm=211 とおくと, b1=41=1,n+1=bn-(12)となるので2のとき 【 (2) の別アプローチ】 f(n) が Ag” の形の場合は、両辺 を Q"+1 で割ると, 典型的な2項 間漸化式に帰着されることに着 目. 漸化式を 2 +1 で割って, 1 \n-1 -1 bm=b1+2(bk+1-bh)=1- k=1 -1- 12/12(1/2)-1/12+(1/1) n-3 1+1 2 an+1 an ・=2. =1- -1 2"+1 2" 11-113 an 2" Cn= とおくと, C+1=2cm-1. (n=1のときもこれでよい) これから解く. よって,=40=4 =4*{/12+(1/2)"} =2.4"-1+2" 【別解】 (2) an+1+A.2"+1=4(an+A2") を満たす A を求める. an+1=40+4A2"-A2n+1=40+A2"+1 と条件式を比べて, A=1. an+1-2n+1=4(an-2")より, {4-2"}は公比4の等比数列. よって, an-2"=4"-1(α1-21)=2.4-1 . 9 演習題(解答は p.75) 次の式で定められる数列の一般項4 を求めよ. an=2.4"-1+2" (1) 41=2,4+1=3an+2n2-2n-1 (n≧1) (2) α=1,n+1-20万=n.2n+1 (n≧1) (岐阜大) (日本獣医畜産大) (1), (3) an+1+f(n+1) =k(a+f(n)) となる (日)を探す

解決済み 回答数: 1