学年

質問の種類

数学 高校生

n進法についてです。どうしてマーカーで印をつけた式ができるのかがわからないです。

基礎トレ 88 難易度4 目標時間20分 www nを4以上の自然数とする。 数 2, 12, 1331 がすべてn進法で表記されているとして, 2=1331 が成り立っている。このときはいくつか。 十進法で答えよ。 ( 京都大学) n進法で2, 12, 1331 と表記される数は, 10 進法ではそれぞれ, 2, n+2, n°+3n² +3n+1 になるので 基礎トレ 41 ① 2n+2=n+3n2+3n+1 次に, 2(k+1) ≧ (k+2)3 ...... ②を証明する。 (左辺) (右辺) = (n+1)3 =2(k+1)-(k+23 =2(k3+3k2+3k+1)- (k^3+6k2+12k+8) =2k°+6k2+6k+2-k-6k-12k-8 n=4 のとき 左辺 = 64, 右辺 =125 n=5のとき 左辺 = 128, 右辺 =216 n=6 のとき 左辺 =256, 右辺 =343 n=7 のとき 左辺 = 512, 右辺 =512 n=8 のとき 左辺 = 1024, 右辺 =729 より,答えの1つが n =7であることがわかる。 また,n≧8 のとき, 2+2 (n+1)と推定でき, これを数学的帰納法で証明する。 (i) n=8 のとき成り立つのは明らかである。 (ii) n=k のとき成り立つと仮定すると 2k+2> (k+1)3 両辺を2倍すると2k+3>2(k+1)3 数学的帰納法 (不等式の場合) =k-6k-6 ここで,f(k)=k-6k-6 とすると, f'(k) =3k2-6 k≧8のとき、f'(k)>0より,f(k)は単調増加 である。 さらに,f(8)=458より k≧8 のとき f(k) > 0 よって、②が成り立つことがわかる。 ①,②より2k+3>(k+2)3 n=k+1のときも成り立つ。 (i), (ii)より, 命題は成り立つ。 よって、答えは n = 7 のみとなる。 答 すべての自然数nで不等式が成り立つことを証明するには (i) 最初の数のとき, 不等式が成り立つことを示す。 自然数は1から始まるので, 通常は n=1のときを示すが, 今回は "n≧8の自然数” なので, n=8 のときを示す。 (ii) n=k のとき, 不等式が成り立つと仮定すると, n=k+1のときも成り立つことを示す。 今回は,n=kのとき,2k+2> (k+1)3であり,これが成り立てば, n=k+1 のとき, すなわち, 2k+3> (k+2)が自動的に成り立つことを示す。 まず, 2k+2> (k+1)3 の左辺を2k+3 にしたいので,両辺を2倍すると①の式が得られる。 「2k+3が2(k+1)より大きい」がわかっていて 「2+3 が (k+2) より大きい」を示したいので, 「2(k+1)が (k+2) 以上である」 を示せばよい。

回答募集中 回答数: 0
数学 高校生

模試です!全て教えて下さると嬉しいです

3 ある旅行会社では,参加者を10名以上50名以下に限定したバスツアーを企画している。 このバスツアーを実施した場合にかかる費用には,「参加者の規模に応じて一律にかかる費 用」(貸し切りバスの費用など)と「参加者1名ごとにかかる費用」(施設への入場料など) がある。 参加者が 26 名以上になると貸し切りバスを2台用意する必要があるため、「参加者の規模 に応じて一律にかかる費用」は次の表のようになる。 参加者の人数 規模に応じてかかる費用 10名以上25名以下 26名以上50名以下 120000 円 210000円 また、参加者が 15名以上の場合, 団体割引が適用される施設があるため、 「参加者1名ご とにかかる費用」は次の表のようになる。 参加者の人数 参加者1名ごとにかかる費用 10名以上14名以下 15名以上50名以下 6000円 5000円 参加者の人数をx名(xは10以上50以下の整数), 1名あたりの参加料をα 円(αは 12000 以上の整数)とし,このバスツアーを実施したときの利益について考える。ただし、 利益とは参加料の合計から「参加者の規模に応じて一律にかかる費用」と「参加者1名ごと にかかる費用」の合計を引いた金額のことであり,キャンセル等による参加者の欠員や消費 税等の税金は考えないものとする。 (1) x=14 とする。 利益が76000円となるような, αの値を求めよ。 (2) x=20 のときの利益を4円,x=30 のときの利益をB円とする。このとき,A,Bを それぞれ」を用いて表せ。 また, |A-BI≦30000 となるようなαの値の範囲を求めよ。 (3)(2)の「A-B≦ 30000 を満たすαの最大値をMとする。 1名あたりの参加料が M円の とき、利益が参加料の合計の30%以上40%以下となるようなxの値の範囲を求めよ。 (配点 25 )

回答募集中 回答数: 0
数学 高校生

この解答の(1)(2)がなんでこうなるかわからないので教えて欲しいです!!

207 za 基礎問 206 133 格子点の個数 3つの不等式 x≧0, y≧0, 2x+y≦2n (nは自然数)で表さ れる領域をDとする. (1) Dに含まれ, 直線 x=k (k= 0, 1, ...,n) 上にある格子点 (x座標もy座標も整数の点) の個数をkで表せ。 (2) Dに含まれる格子点の総数をnで表せ . 精講 計算の応用例として, 格子点の個数を求める問題があります. こ れは様々なレベルの大学で入試問題として出題されています。 格子点の含まれている領域が具体的に表されていれば図をかいて数 え上げることもできますが,このように,nが入ってくると数える手段を知ら ないと解答できません.その手段とは,ポイントに書いてある考え方です。 ポイントによれば,直線 y=kでもできそうに書いてありますが、こちらを 使った解答は (別解) で確認してください. (1) 直線 x=k上にある格子点は (別解)直線y=2k (k=0, 1, ...,n) 上の 格子点は(0,2k), (1,2k), ..., n-k2k (n+1) 個. 注 2n y=2k また,直線 y=2k-1 (k=1, 2,...,n) 上の 格子点は n Oi-k 02k-1), (1,2k-1), ..., (n-k, 2k-1) (n+1) 個. よって, 格子点の総数は 2n (n+1)+(n-k+1) k=0 k=1 y-2k-1 2Σ(n-k+1)+(n+1) =n(n+1)+(n+1) =(n+1)(n+1) =(n+1)2 \n On-k+ y=2k と y=2k-1 に分ける理由は直線 y=k と 2x+y=2n の交点を求めると,(n-212 k) となり,n-1/2 がんの偶奇によって 整数になる場合と整数にならない場合があるからです。 解答 Y (k, 0), (k, 1), 2n x=k (k, 2n-2k) ポイントある領域内の格子点の総数を求めるとき の (2n-2k+1) 個. 2n-2k-- 注 y座標だけを見ていくと, 個数がわかります. (2)(1)の結果に,k= 0, 1, ..., n を代入して, すべ て加えたものが,Dに含まれる格子点の総数. 0 I. 直線 x=k (または, y=k) 上の格子点の個数を k で表す Ⅱ.Iの結果について Σ計算をする y=-21th .. (2n-2k+1) =24721 k=0 ◆ 等差数列 2 {(2n+1)+1} 等差数列の和の公式 演習問題 133 =(n+1)2 第7章 注 計算をする式がkの1次式のとき,その式は等差数列の和を表 しているので、12/27 (atan) (112) を使って計算していますが,もち ろん, 2n+1)-2々として計算してもかまいません。 k=0 k=0 放物線y=x2 ・・・ ① と直線 y=n² (nは自然数) ...... ② がある. ①と② で囲まれた部分 (境界も含む)をMとする.このと 次の問いに答えよ. (1) 直線=k (k=1, 2,...,n) 上のM内の格子点の個数をn, んで表せ 写真 (2) M内の格子点の総数をnで表せ.

回答募集中 回答数: 0