学年

質問の種類

数学 高校生

高校数学対数です。(2)の解答で、なぜ不等式は〜のところでlogをとって真数だけの不等式にしないのですか?また、(3)は全然分かりません。解説お願いします!

解答 61 W 基本例 (1) logo.3(2-x)≧logo.3(x+14) 00000 295 例題 184 対数不等式の解法 次の不等式を解け。 (2) log2(x-2)<1+log/(x-4) (2)神戸薬大, (3) 福島大] 基本 182 183 重要 185、 (3)(10gzx-10g24x>0 指針 対数に変数を含む不等式 (対数不等式) も, 方程式と同じ方針で進める。 まず,真数>0 と,(底に文字があれば)底>0,底≠1の条件を確認し,変形して 10gaA<10gaBなどの形を導く。 しかし、その後は a>1のとき logaA <loga B⇔A<B 大小一致 0<a<1のとき logaA <logaB⇔A>B 大小反対 のように、底αと1の大小によって、不等号の向きが変わることに要注意。 (3)10gzxについての2次不等式とみて解く。 (1)真数は正であるから, 2-x>0 かつ3x+14>0より 14 <x<2 3 ① 底 0.3は1より小さいから, 不等式より 2-x≦3x+140<a<1のとき よって x-3 ② fools+ ①,②の共通範囲を求めて -3≦x<2 (2) 真数は正であるから, x-2>0かつx-4>0より> x>4 1=log22, log/(x-4)=-log2(x-4) であるから, 不等式は log2(x-2)<10g22-10gz(x-4) ゆえに log2(x-2)+10g2(x-4)<10gz2 よって log2(x-2)(x-4)<log22 底2は1より大きいから (x-2)(x-4)<2 loga A≤loga B ⇔A≧B (不等号の向きが変わる。) 2 これから x-2<- x-4 が得られるが, 煩雑にな るので,xを含む項を左 1辺に移する。 5 5章 3対数関数 ゆえに x2-6x+6<0 よって3-√3<x<3+√3 x-6x+6=0 を解くと x>4との共通範囲を求めて (3) 真数は正であるから 4<x<3+√3 x>0 ① log24x=2+10gzxであるから,不等式は x=3±√3 また√3+3>1+3=4 (log2x)-log2x-2>0 ゆえに (logzx+1)(10gzx-2)>0 よって logzx <-1,2<logzx したがって logax<loga, log24<log2x 底2は1より大きいことと,①から0<x<12/24<x 10g2x=t とおくと t2-t-2>0 よって (t+1)(t-2)>0 練習 次の不等式を解け。 ②184 (3-x)≤0 (2) logs(x-1)+logs (x+2)≦2 p.301 EX 117

回答募集中 回答数: 0
数学 高校生

考え方で、⑴では、最大値が負であればよくて、⑵では最小値が正であればよいとありますが、どっちが最大値でどっちが最小値でみるのか、見分け方はありますか?(負であればよい、正であればよいという部分は、不等号の向きできまっていると思うのでわかっています) また、⑵で、場合分けを... 続きを読む

Dark 例題 75 ある区間でつねに成り立つ不等式 次の条件が成り立つような定数の値の範囲を求めよ。 **** 125x で、つねに が成り立つ。 4ax+4g+8<0 2x、つねに が成り立つ。 4ax+4g+8>() 第2 考え方 グラフで考える。/(x)=xax+44 +8 のグラフは下に凸 区内での人質が息であればよい。 であればよい。 (2)区内での最小 f(x)=(x-24-40°+40 +8 f(x)=x-4ax+40 +8 とおくと (1) y=f(x)のグラフは下に凸なので 2 である. 6での最大値(2)または(6) つねに f(x) <0 となる 条件は、 A どちらも負になれば よいから、場合分け はしない。 f(2)=-4q+120 (6)=-20a+44 < 0 これをともに満たすのは、 a>3 (2) y=f(x)のグラフは下に凸で,軸は直線x=24 (i) 2a <2 つまり α <1 のとき 26 での最小値はF(2) よって, 求める条件は, 下に凸なので、最小 となるのは軸. 左端 x=2. 右端x=6の いずれか (2)=-4a+12> 0 したがって a<3 26x 軸の位置で3通りに 場合分け これと a <1より, a <1 (ii) 2≤2a≤6) 1Sa≤3 よって、 求める条件は, f(2a)=-4a²+4a+8>0 必ず、場合分けした 範囲と合わせる。 2x6 での最小値は(24) したがって,-1<a<2 2 2a 6x これとsaより, 1sa <2 (i) 6 <24 つまり 4>3のとき 2x6 での最小値は (6) a-a-2<0 (a+1)(a-2)<0 -1<a<2 よって、求める条件は, f(6)=-20g+44 > 0 したがって, a<1 これとα>3 より 解なし よって, (i)(iii)より, a<2 (i) (日) 2 a ●場合分けしたものは、 最後はドッキング

回答募集中 回答数: 0
数学 高校生

1ページ目の(2)が、なぜ2ページ目の(3)のようにならないのでしょうか、区別の仕方が分からないです。教えてください。

mentos] 190 基本 111 2次不等式の解法 (2) 次の2次不等式を解け。 (1)+2x+1>0 (3) 4x24x+1 (2) -4x+5>0 (4)~3x²+85-6>0 の不等式を ( [指針 平方完成した式から判断できる。 前ページの例題と同様、2次関数のグラブを いて、不等式のを求める。グラフととの共 点の有無は、不等号を番号におき換えた2次方 程式 ax+bx+c=0の の、または く '+2x+1=(x+1) であるから. 解答 不等式は よって、 は (x+1)0 1以外のすべての実数 (2)x4x+5=(x-2)+1であるから, 不等式は (x-2) +10 よって、解はすべての実数 (3) 不等式から 4x³-4x+150 4x4x+1=(2x-1)であるから, 不等式は (2x-11 50 1 よって、 解はx= 2 (4) 不等式の両辺に-1を掛けて 3.x²-8x+6<0 2次方程式 38x+6=0の判別式を D <KKK ADの場合、 基本形に 4x<-1-1 てもよい。 ADDの場合 基本形に、 関数コースー は、すべての y>0 して のとき 1のとき 721 (1) C Dとすると 22-4-3・6=-2 の係数は正で、かつであるから,すべてから、 xに対して3x²-2x+6> 0 が成り立つ。 よって、与えられた不等式の解はない 不等式の両辺に1を掛けて 3x-8x+6<0 x+6=3x1+1/3であるから、 x8+60を満たす実数は存在しない。 よって、与えられた不等式のはない +6 へのグラフと 住むグラフが下に あることから、すべ にして 次の2次不等式を解け。 111 (J)+x+420 (3) -4x+12-920 (2) 2x+4x+3<0

回答募集中 回答数: 0
数学 高校生

数A 確率 下の写真についてです。 この問題のイ、全くわかりません。なんの目的でk+1とkを比較しようとしているのかも、何をしようとしているのかも理解できませんでした。 解説していただきたいです。よろしくお願いします

重要 例題 56 独立な試行の確率の最大 383 00000 さいころを続けて100回投げるとき 1の目がちょうどk回 (0≦k≦100) 出る確 率は 100 Ck ×・ 6100 でありこの確率が最大になるのはk=1のときである [慶応大) 基本49 指針▷ (ア) 求める確率を とする。 1の目が回出るということは,他の目が100k回出ると いうことである。 反復試行の確率の公式に当てはめればよい。 (イ) +1 差をとることが多い。しか の大小を比較する。大小の比較をするときは, が多く出てくることから、 比 し確率は負の値をとらないことと "Cr= Ph+1 pk n! r!(n-r)! をとり、1との大小を比べるとよい。 を使うため、式の中に累乗や階乗 11 CHART 確率の大小比較 比 pk+1 をとり、1との大小を比べる pk 章 8 独立な試行・反復試行の確率 2章 解答 さいころを100回投げるとき 1の目がちょうどk回出る確率 5 100-k 75100- とすると =100CkX 反復試行の確率。 6100 Pk+1 100!5% k!(100-k)! 5:00(+1) ここで pk (k+1)! (99-k)! 100! 5100-k 1+1=100C (+) X 6100 100-k pakの代わりに 5(k+1) k+1 <1 とすると 100-k k+1とする。 また、 <1 pk 5(k+1) 両辺に 5(k+1) [>0] を掛けて 100-k<5(k+1) 95 これを解くと k> ·=15.8··· 59 500 === (k+1)!=(k+1) k! に注意。 両辺に正の数を掛けるから, 不等号の向きは変わらない。 6 よって, k≧16のとき pk>Pk+1 1 pk+11とすると kは 0≦k≦100 を満たす整 数である。 100-k>5(k+1) pk 95 これを解くと k<=15.8... Daの大きさを棒で表すと |最大 よって, 0≦k≦15のとき D<Dk+1 増加 したがって Po<i<<P15<P16, P16>1>>P100 2012 100 k よって, か が最大になるのはk= 16のときである。 17 99

回答募集中 回答数: 0
数学 中学生

数学の高校入試過去問です❕ 不等号、小なりイコールがいまいち分かりません 2番の解説をお願いします

解き終わったら、「合格への軌跡」より到達度チェックの画面を立ち上げて, 自分の答えを入力しましょう。 間違えた問題にチェック。 【実力判定】到達度チェックの前に解き直しましょう。 ■ 次の文章を読み,下の問いに答えなさい。 (25点×4) 携帯電話の通信量を x GB, 月額利用料を円とする。 通信会社のA社, B 社は,利用料金を次のように設定している。 = (月額利用料) (基本料金) + (通信量に応じた通信料金) A社では,基本料金は一律600円であり, 通信料金は通信量 1GB あたり600円 である。 B社では,基本料金と通信料金は次の表のように設定している。 3GB 未満 基本料金 1600円 通信量 x GB に対する通信料金 3GB 以上 8GB 未満 一律1200円 400x P 8GB 以上 (通信制限が発生) 一律 3200 円 6000 5000 4000 200 2000 3200 3000 2000 1000 4800 0 4 5 6 7 8 1 2 3 X 3600 A2400 460077600 (1)A社について,yをxの式で表しなさい。 (2) B社について, 通信量が増加すると月額利用料も増加する範囲の①xの変域 X B 1200 245 A 4200 B 2400 および②yの変域を求めなさい。 35x08 ≤4≤ 3≦x≦8 2000 5000 XA2400 B2800 28004 CLA800 (3)1か月の通信量が3GBのXさん, 6GB のYさん, 8GB のZさんの3人の中

回答募集中 回答数: 0
生物 高校生

誰か生物いける方に質問です! 問4の問題で100文字以内の文字書いてみたのですが合っていますでしょうか?

201109 膜の が応 報は, よ 佃 論述 計算 神経細胞は,普段は細胞外が )に,細胞内が (2) に帯電している。 神経細胞 167 ミオクラフによる筋収縮の測定■次の文章を読み、以下の各問いに答えよ。 が刺激を受容すると, ( 3 ) が瞬間的に開いて( 4 ) が神経細胞内に大量に流れ込み , 5)が発生する。 また, ( 5 ) が発生した後,すぐに ( 6 ) に戻るのは, ④7 ) が開き(8) が神経細胞の外に出るからである。 回転 神経の興奮と筋肉の収縮について実験する カエルの足のふくらはぎの筋肉とそ ときに, れにつながる神経(座骨神経)を切り離さずに 取り出したものを使う。これを神経筋標本と う。 この実験には, すすを塗った紙をドラ ムにはり付けたミオグラフ, おんさなどを右 の模式図のように設置して使用する。 1. 文章中の ( )~ ( 8 )に入る適 切な語または記号を答えよ。 間2. 筋肉の神経筋接合部から3cm離れた座骨神経のAの場所で, 1回刺激を与えると 5.5ミリ秒後に,また,神経筋接合部から6cm離れたBの場所で同じ強さの刺激を与え ると 6.5ミリ秒後に,それぞれ筋肉の収縮が起こった。 この座骨神経の興奮伝導速度(m/ 秒) を計算せよ。 問3.問2と同じ神経筋標本で,筋肉に直接電気刺激を与えた場合に収縮までに要した時 間が2ミリ秒であった。 神経筋接合部における刺激伝達に要した時間は何ミリ秒か,計 算せよ。 問4. 脊椎動物の有髄神経は興奮の伝導速度が非常に大きい。 その理由を, 神経の構造と 興奮伝導様式を考慮して100字以内で説明せよ。 問5. 座骨神経のAの場所で10秒間、1秒間に30回の割合で刺激を与え続けたところ, 筋 肉は刺激を与えている間, 一続きの収縮をし続けた。 このような筋肉の収縮と問2のよ うな刺激で起こった収縮を,それぞれ何と呼ぶか。 また,どちらの収縮がより強いか, 等号あるいは不等号で記せ。 よう以下の 間 6. 問5のような刺激を与え続けると筋肉中の以下の成分はどのように変化すると考え られるか。増加するものと減少するものに分け、それぞれ記号で答えよ。 (a) グリコーゲン (b) 乳酸 (c) クレアチンリン酸 ー 間 7. 問5のような刺激を与え続けたとき, 筋肉1g中にクレアチンが0.0655mg ふえた とすると,1gの筋肉で消費された ATPは何マイクロモルと考えられるか, 答えよ。 ただし、クレアチンの分子量を131とし、 実験開始時と終了時で筋肉中のATP 濃度に変 化はなく,実験中に解糖系は働かなかったものとして計算せよ。 r 筋肉 ミオグラフ おんさ 大腿骨 A B - 座骨神経 ふくらはぎの 筋肉 おもり 間 6.7. クレアチンリン酸1分子は, それぞれ1分子のクレアチンとリン酸に分解される。 ヒント (東京海洋大改題) 8. 動物の反応と行動 第8章 219 動物の反応と行動

回答募集中 回答数: 0
数学 高校生

極限の問題で初項0の場合を考えていないのですが、なぜ考えなくて良いのか教えて頂きたいです。

練習 次の数列が収束するように,実数xの値の範囲を定めよ。 また, そのときの数列の極限値を求め よ。 ②94 (1) (1) 収束するための条件は -1</1/23x1 x≦1 3 これを解いて 2 2 -x=1 となるのは,x= また,Aで (2) {(x2-4x)"} 3 2 <x≤. よって x2-4x≦1から x2-4x-1≦0 数列の極限値は (2) 収束するための条件は -1<x²-4x≦1 -1<x²-4x から x ²-4x+1>0 x2-4x+1=0の解は x=2±√3 x<2-√3, 2+√3 <x よって 3 3 012/21<x<12/2のとき0.x=12/2のとき A 掛けて -(x2-x+2)<x2+2x-5から ゆえに (2x+3)(x-1)>0 13 x- ...... HINT 数列{rn} の収束 条件は -1<r≦1 また,極限値は 8) mil=>-1<r<15 0₂ のときであるからなら1② x2-4x-1=0の解は x=2±√5 よって 2-√5 ≦x≦2+√5 2 ゆえに,収束するときの実数xの値の範囲は, ① かつ② から 02-√5 ≦x<2-√3, 2+√3<x≦2+√5 (3) {(x²-x+2 また、Aでx2-4x=1 となるのは、x=2±√5のときであるか ら、 数列の極限値は 映画 2-√5<x<2-√3, 2+√3 <x<2+√5のとき0; x=2±√5のとき1 (3) 収束するための条件は-1<x+2 3, 1<x 2' x2+2x-5\" x-x+2=(x-1/12 ) 2+1/17/>0であるから、各辺にポーx+2 を -(x²-x+2)<x²+2x-55x²-x+2+1 mil ( x2+2x-5 ≤1..... (A) x2+2x-5≦x2-x+2から 3x≦7 よってx≦- 7 AT D ←-1<x<1のときと r=1のときで数列{r"} の極限値が異なることに 注意。 (2) TER ae 2-√5 2-√3 x=0の場合 考えなくて♪ 2+√3 2+√5 2x2+x-30 ことになるから,不等号 の向きは変わらない。 MAA ←各辺に正の数を掛ける 4i 練 MJ

回答募集中 回答数: 0