学年

質問の種類

物理 高校生

背理法による証明 k2乗は整数であるから C の2乗は4の倍数なのに M 2乗+ N 2乗- m - n は整数であるから a 2乗+ b 2乗は4の倍数ではないがわからないので教えてください

例題 4 背理法による証明 第2章 集合と命題 ★★★★~ la, b, c は a2+b2=c2 を満たす自然数とする。 このとき, a, bの少なくとも一方は偶数であること 背理法を用いて示せ。 考え方 結論を否定して矛盾を導く 結論が成り立たないと仮定する。 (結論を否定する) ⇒ 「α,bの少なくとも一方は偶数」の否定は 「a, bがともに奇数」 a+b=c の両辺について, 4の倍数であるかどうかを調べる。 解答 a, b がともに奇数であると仮定する。 [類 岐阜聖徳学園大 ポイント ① 結論を否定 ② 右辺を調べる このとき,a2,2は奇数であるから,c=d'+62 は偶数である。 左辺を調べる ③ 矛盾を導く 練習 4 よって, cも偶数であるから, cは自然数kを用いてc=2k と表される。 ゆえに,c2=(2k)²=4k2となり,kは整数であるから,2は4の倍数である。 一方,奇数 α,bは自然数nを用いて,a=2m-1,b=2n-1 と表される。 このとき,a+b2=(2m-1)+(2n-1)²=4(m²+n-m-n) +2となり、 m²+m²-m-nは整数であるから, a +62は4の倍数ではない。 ゆえに,a+b2=c2において,右辺は4の倍数であるが, 左辺は4の倍数でな から, 矛盾する。 したがって, a, bの少なくとも一方は偶数である。 [終] (1) 正の整数xが3の倍数ではないとき, x2を3で割った余りは1であることを示 (2)x,y,z は x2+y'=z2 を満たす正の整数とする。このとき,x,yの少なく 3の倍数であることを, 背理法を用いて示せ。 〔類

未解決 回答数: 1
保健体育 中学生

ハンドボールのプリントです‥オレンジで描いているところが合っているか確認お願いしたいです😭🙏 書いてないところもあるので教えてください🙏🙏

○コートの大きさやラインの名前を記入しましょう。 コートの大きさ A・・・ B・・・( C・・・( 20 D・・・( 2000 )m )m )m )m エリア名とラインの名前 ウ ア・・・(ゴール ライン イ・・・(アウターゴールライン キ ウ・・・(ゴール エリア エ・・・(ゴールエリア オ ライン フリースローライン カ・・・(センター)ライン (サイド ライン ID C B ハンドボールの特徴的なルール ボールがコートから出た時の再開方法) 3 5 1 ルール解説 1 攻撃がシュートをして、 誰も触らずにコートの 外にボールが出た場合 (スローイン )で再開 2 攻撃がシュートしたボールを守備が触って、 サイドラインから出た場合 →ボールが出た位置から(スローイン で再開 3 攻撃がシュートしたボールを守備が触って、 アウターゴールラインから出た場合 →近い方のコーナーから(スローイン(コーナー)で再開 スローフ 4 攻撃がシュートしたボールをキーパーが触って サイドラインから出た場合 →ボールが出た位置から(スローで再開 5 攻撃がシュートしたボールをキーパーが触って アウターゴールラインから出た場合 →キーパーがゴールエリアの中から ・攻撃 ○ 守備 ・・・キーパー (ゴールキーパー で再開 ZP-

回答募集中 回答数: 0