学年

質問の種類

数学 大学生・専門学校生・社会人

この問題の解き方が分からないため、分かる方いらっしゃれば細かく解説お願い致します!

教養基礎演習Ⅲ 6 【類題3】 ある会社の社員の所有している者について調べたところ、次のア~エのことがわかった。 ア 自動車を所有している社員は、パソコンを所有している。 イオートバイを所有している社員は、 デジタルカメラを所有している ウ デジタルカメラを所有していない社員は、 パソコンを所有していない。 エ パソコンを所有している社員は、オートバイを所有している。 以上から判断して、 正しいのはどれか。 1 自転車を所有している社員は、 オートバイを所有している。 2 自転車を所有している社員は、デジタルカメラを所有していない。 3 デジタルカメラを所有している社員は、 パソコンを所有している。 4 デジタルカメラを所有している社員は、オートバイを所有している。 5 オートバイを所有している社員は、 自転車を所有している。 【類題4】 【類題5】 ある会社の社員の所有している者について調べたところ、次のア~エのことがわかった。 ア 自動車を所有している社員は、パソコンを所有している。 イオートバイを所有している社員は、スマートフォンを所有している。 ウスマートフォンを所有していない社員は、 パソコンを所有していない。 エ パソコンを所有している社員は、オートバイを所有している。 以上から判断して、 正しいのはどれか。 1 自転車を所有している社員は、オートバイを所有している。 2 自転車を所有している社員は、スマートフォンを所有していない。 3 スマートフォンを所有している社員は、 パソコンを所有している。 4 スマートフォンを所有している社員は、オートバイを所有している。 5 オートバイを所有している社員は、 自転車を所有している。 ある会社の社員の所有している者について調べたところ、次のア~エのことがわかった。 ア 自動車を所有している社員は、パソコンを所有している。 イ原付バイクを所有している社員は、スマートフォンを所有している。 ウ スマートフォンを所有していない社員は、 パソコンを所有していない。 エ パソコンを所有している社員は、 原付バイクを所有している。 以上から判断して、 正しいのはどれか。 1 自転車を所有している社員は、 原付バイクを所有している。 2 自転車を所有している社員は、スマートフォンを所有していない。 3 スマートフォンを所有している社員は、 パソコンを所有している。 4 スマートフォンを所有している社員は、 原付バイクを所有している。 5 原付バイクを所有している社員は、 自転車を所有している。 正解 肢1 正解 肢1 正解 肢1

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

こういった系統の問題が苦手のため、効率良い問題の解き方をどなたか分かる方教えて頂けると嬉しいです!

教養基礎演習Ⅲ| 【類題3】 ある高校では、230 人の生徒全員が、 書道、美術、音楽のうちいずれか1科目を選択しており、これら3科目 の選択状況について、次のア~エのことがわかっている。 ア 書道を選択している生徒数は76人、 美術を選択している生徒数は70人である。 イ 書道を選択している男子の生徒数は、音楽を選択している女子の生徒数と同じである。 ウ 男子生徒全体の3割である。 美術を選択している男子の生徒数は、 音楽を選択している男子の生徒数は、音楽を選択している女子生徒数の2倍である。 以上から判断して、この高校の女子の生徒数として、正しいのはどれか。 1 100 人 2 110人 3 120人 4 130 人 5 140 人 正答肢2 【類題4】 ある高校では、230 人の生徒全員が、 書道、美術、音楽のうちいずれか1科目を選択しており、これら3科目 の選択状況について、次のア~エのことがわかっている ア 書道を選択している生徒数は 69 人、 美術を選択している生徒数は70人である。 1 書道を選択している男子の生徒数は、 音楽を選択している女子の生徒数と同じである。 ウ美術を選択している男子の生徒数は、 男子生徒全体の3割である。 音楽を選択している男子の生徒数は、音楽を選択している女子生徒数の6倍である。 以上から判断して、この高校で美術を選択している女子の生徒数として、正しいのはどれか。 1 30 人 2 31 人 3 32 人 4 33 人 5 34 人 wa che 正答肢

回答募集中 回答数: 0
数学 高校生

うかる確率の問題なのですが集合の概念を使う必要があるのでしょうか?またなぜ私の解答は間違っているのでしょうか?

高の歩動の指対試こな 2 対 め ① Z ステージ3 入試実戦編 場合の数 本ITEM からは, 「法則」 の活用がメインとなります。 まずは, 「含む」とか「ある か、一見明確な表現について考えます. ここが 「含む」=「少なくとも1つある」 →補集合を利用 6/3× 桁の自然数を作 例題33 1,2,3,4,5の5種類の数字を並べて n るとき、次の問いに禁えば何があるかじ数字を繰り返し用いてもよいとす。 (1) (2) 数字 1,2をどちらも含む自然数は何個あるか. 着眼) (3) 数字 1,2,3を全て含む自然数は何個あるか. 2/16 (2)(3)×カルノ回使う必等以 (1) 含まれる数字1の個数は, 次のうちどれかです。 全体像を視 0 1,2, 3...,n 求めやすい 求めたい olan i これを見れば、問われている 「1を含む」には多くの場合があって面倒であり, 含まない」の方が考えやすいことが一目瞭然」 ここは「補集合」 を活用しましょう。 (2) (1) で得た着眼をもとに, 「包除原理」 を適用しましょう. 2つの集合A,Bが関 する問題ですから,「カルノー図」を用いて視覚化します。 (3) こちらは3つの集合 4, B, C ですから「包除原理」+「ベン図」で.ただし... 解答作られる自然数の総数は5.… (*) (右図参照)1桁目 2桁目 また,それらから作られる3つの集合||||| A: 「1を含む」, B: 「2を含む」 C: 「3を含む」 1 を考える. 2 (1) Aの補集合は A: 「1を含まない」, i.e. 「n 桁が全て 2, 3, 4, 5」. : n(A)=4". ○これと (*) より 求める個数は n(A)=5"-n(A)=5"-4". (2) 求める個数はn (A∩B) である. ○B: 「2を含まない」, i.e. 「n 桁が全て 1,3,4,5」, ANB: 「1,2を含まない」 i.e. 「n桁が全て 3, 4, 5」. .. n(A∩B)=3". ○これらと (*) より 求める個数は n(A∩B)=5"-(4"+4-3") …① =5"-2.4"+3". 91 CHIRUPA 求めたい A A カルノー図で B 3 ¥ 5 B ・求めやすい (③3) ○求める個数は(A∩BC)である。 (2)までと同様にして n(A)=n(B)=n(C)=4". n(ANB)=n(BNC)=n(CNA)=3", ANBOT: 「1,2,3を含まない」 ie. 「n 桁が全て 4.5」 .. n(ANBNC)=2". これらと①より、求める個数は 。 n(ANBNC)=5n-(4+4+4"-3"-3"-3"+2") - 解説 ① ② で用いた公式を集合記号を用いて書くと、次のようになります。 (作られる 自然数全体の集合を表します. ① :n(A∩B)=n(Un (A∩B)- =n(U) -n (AUB) 除原理 . ド・モルガンの法則 ② : n (ANBNC) =n(U) -n (ANBNC)- 確率では事象 (U)-{n(A)+n (B)-n (A∩B)). =n(U)-n(AUBUC)L =n(U)-{n(A) + n(B)+n(C) ド モルガンの法則 ラ包除原理 -n(ANB)-n(BNC)-n(CNA)+ n(ANBNC)). ①ならまだしも,②をマジメに書くとそれだけで疲れちゃいますから、解答のよう にイキナリ数値を書きましょう. そもそも、 上記等式を“公式”として覚えて使ってい るというより, (2) のカルノー図や (3) のベン図を見ながら個数を過不足なく数えてい 注意1 ITEM 22 でも書いたように、ベン図を用いる際には、“本質的な集合”, つま るという感覚でいて欲しいものです。 り個数を求めやすい集合が輪の内側になるように描かなければなりません。 本間で求 めやすいのはA,B,C の方ですね。なので解答のような描き方になったわけです。 重要 再確認しておきましょう. ベン図を書く人にも工夫 集合の名称 2つの集合絡んだら, 名前を付けてカルノー図 3つの事象ではベン図.ただし輪の内側が求めやすいように. 注意2 本間では ITEM 6 注意でお見せした“主役脇役ダブルカウント”という有名な誤答 をする人が多いので注意すること. A TAATETER. ステージ3 入試実戦編 場合の数 95 → 5.19 類題 33 8/3× 100から999の3桁の整数の中で、 3つの位の中に2の倍数と3の倍数の両方を含むもの の数を求めよ.0=20より0は2の倍数同様に,0は3の倍数) ( 解答解答編p.11)

回答募集中 回答数: 0
数学 高校生

赤線部のようになるのが分からないので教えて頂きたいです!

7 交 30 場合の数と確率 11 場合の数 (1), 例題 11 倍数の個数 6個の数字 0, 1, 2 3 4 5 の中から異なる3個の数字を取り出して, (百の位は 0とはならないように)3桁の整数をつくる。次の3桁の整数は何個できるか。 (1) 321より大きい整数 (2) 2の倍数 (3) 5の倍数 (4) 3の倍数 [13 青山学院大・改 解法へのアプローチ (2)2の倍数は一の位が偶数である。 (4) 3の倍数は,各位の数の和が3の倍数となる。 5の倍数は一の位が0か5である。 (3) e 63 をB, (1) (2) 解答 (1) 百の位が3, 十の位が2の場合, 324, 325 のみで2個。 百の位が 3, 十の位が5の場合 4C1=4 (個) 百の位が3, 十の位が4の場合 4C1=4 (個) 百の位が4の場合 5P2=20(個) 百の位が5の場合 5P2=20(個) よって, 321より大きい整数は 2+4+4+20+20=50(個) (2) 2の倍数は一の位の数字が 0 一の位が0の場合 5P2=20(個) 2 4のものである。 CHOOS 一の位が2の場合 5P2個から 012,032,042,052 を引いて 20-4=16(個) 一の位が4の場合、一の位が2の場合と同様に16個 よって、2の倍数は 20+16×2=52 (個) (3) 5の倍数は一の位の数字が0.5 のものである。自闘を請求 第一の位が0の場合、20個 一の位が5の場合, (2) と同様に考えて 5P2-4=16 (個) 1845 よって, 5の倍数は 20+16=36 (個) (4)3の倍数は各位の数字の和が3の倍数のものである。 0から5までの3つの数字の中で,和が3 の倍数となるものは 0 を含むものは, {0, 1,2}, {0, 1,5}, {0, 2, 4}, {0, 4,5} 0を含まないものは, {1, 2,3},{1, 3,5}, {2, 3,4}, {3, 4, 5} だけある。 例えば, 0, 1,2の場合, できる整数は 3P3-2個 1,2,3の場合、できる整数は 3P 3個であるから, 3の倍数は (3P3-2) ×4+3P3×4=40 (個) 13041 64 ある AHSIN MYIN (2) 5の倍数 (4) 4500より大きく 8500より小さい整数 ★65 (1) (2) ★60 類題にChallenge ★62 5個の数字 0, 2,4, 68 から異なる4個を並べて4桁の整数をつくる。次 の整数は何個できるか。 (1) 4桁の整数 (3)3の倍数 [13 駒澤大] Jr う (1 (2 €

回答募集中 回答数: 0