学年

質問の種類

物理 高校生

(1)についてなのですが何故地表との圧力と風船内の圧力が同じになっているのかが分からないです。 教えて頂きたいです。よろしくお願いいたします。

2倍 6/23 面 で、 EP 132 熱 45 気体の法則 熱気球がある。 下端に小さな開口部があって、 内部の空気を外気と等しい圧力にしている。ヒ ーターにより内部の空気の温度を調節すること ができる。 風船部の体積をV=500〔m²〕(ゴン ドラの体積は無視), 気球全体の質量を W= 180 [kg] とする (内部の空気は含めない)。 地表 での大気圧を Po=1.00×10〔Pa〕,密度を po= 1.20 [kg/m²] とする。 大気は理想気体とし、温 度はT=280〔K] で高度によらず一定とする。 45 気体の法則 浮力 133 排除した V m = pV と表されるから」 00 Vg = (oV) g+Wg = 1.20×500-180 500 LECTURE 内部の空気の質量mは m (1) 風船部 力のつり合いより p = 00V-W = 0.840 〔kg/m²] 外気について: 内部の空気について: ゴンドラ T₁ = 0 To == (1) 気球を地面から浮上させるには,内部の空気の密度をどこまで下 げることが必要か。 また,そのためには何Kまで熱することが必要 か。その密度 p〔kg/m3] と温度 T1 [K] を求めよ。 (2)内部の空気の温度を上記のに保って、ゴンドラ内の積荷をw (=18〔kg〕だけ軽くした。気球は上昇し,ある高度で静止するはずで ある。その高度における大気の密度 p1 〔kg/m3〕 を求めよ。 (3)その高度における大気圧 P1 [Pa〕 を求めよ。 (4) その高度は次のいずれの値に最も近いか。 より Po=RTo P Po=RT..... 1.20 0.840 D V P mg ......① To P X280 = 400 (K) Wg 3 浮力が増して浮くの ではない! 内部の空気の重さ mg を減らして浮く。 (2) 気球の外部, 内部の空気について P₁ =RT.......3 外部: M 内部: P1= é M RT………④ ④ より To (3 0=101 力のつり合いより piVg=(p'V)g+(W-w)g 上の を代入して, p1 を求めると T₁(W-w) 400 × (180-18) 500X (400-280) = 浮力 Vg 0' T 01 V(T1 To) =1.08 (kg/m³) m'g P1 100m,300m,500m,700m, 900m, 1100m (東京大) (3)外気についての①、③に着目し、 とすると To 02)x S.NX 00S 02) x 08- 1.08 R 1.20 (W-w)g Level (1)~(4)★ Base of 理想気体 状態方程式 大気の上端 気体定数 [ J/mol・K] この部分 この部分 重さ P の重さ P Point & Hint 力のつり 合いでは, 風船部内にある空気 の重力を忘れないこと。 状態方 程式は, 1モルの質量をM,密 度をpとしてP=RT と 表せる(気体の質量をと すると,n=m/M=pVM)。密 度を扱う場合はこの形が便利。 PV=nRT- 圧力 体積物質量 絶対温度 〔P〕= [N/m2〕 〔3〕 [mol] [K] ※T[K] = 273 + t[°C] [LOOST-SI ※nはモル数ともよばれ,分子数をNとす ると, n = NINA (NAはアボガドロ定数) (4)ある高さでの大気の圧力は、それより上空にある空気の重さ(正確には、単位 面積あたりの重さ)に等しい。 P₁ = 0₁ Po== · x 1.00 × 105 = 900×10'[Pa〕 Po (4) 地上から高さんまでの空気について,平均密 度はおよそ (po +p1)/2であり, 1m² あたりの 重力 (重さ) は Po-P, に等しいから 00+01. hg = Po-P₁ ふん≒ 2 2(Po-Pi)_2(1.00 -0.900)×105 (po+01)g (1.20 +1.08) x 9.8 ≒895≒900[m] 1m² 地上 pihg < Po-Pi < pohg と不等式にしてい 850くん <945 となる。

回答募集中 回答数: 0
生物 高校生

生物 ハーディワインベルグの法則 3番の(1)がなんでその遺伝子頻度になるか教えてください

ルグの法則が成り立つものとする。 この集団における各血液 型の割合を,遺伝子頻度から予測せよ。答えは,四捨五入に より小数第1位までの百分率で示すこと。 1724209+40.95 An 9²+2qr-0.21 13:0218の All: 0.0918 0.2 6:0:3136 (A型・・・ (A型・・・ 38%) (B型... 22%) (AB型・・・ 3 3. 次の文章を読み, 以下の問いに答えよ。 ある2倍体の生物にはA型 B型 C型の3種類の 対立形質があり,この形質はA型にする遺伝子 A, B 型にする遺伝子 B, C型にする遺伝子Cの3種類の遺 伝子によって決まる。 これらは同じ遺伝子座に存在す る複対立遺伝子で, AはBおよびCに対して顕性であ り,BはCに対して顕性である。 この生物のある集団において, 5000 個体の形質を調 査したところ, A型は 3750 個体, B型には1050 個体、 C型は 200 個体であった。 この集団はハーディ・ワイ ンベルグの法則が成り立つものとする。 (1) この集団の遺伝子Aの頻度をp, 遺伝子 B の頻度 合 (p+q+r=1), p, q, r のそれぞれの値を求めよ。 )(0.2) (p0) (q0.3 ) (r... D. 2 さ (2) この集団から A型の形質の個体がすべて除去され 頻度の値を答えよ。 (A・・・ 5同じ ) (B... ) (0... N.S R 2年 一組 番

回答募集中 回答数: 0
1/1000