学年

質問の種類

数学 高校生

⑶にて x=-1では不連続にならないのですか? 確かにlim[x→-1+0]f(x)=f(-1)は成り立ってますけど、 その負側ではすぐに途切れているので不連続だと思いました。

基本(例題 56 関数の連続 不連続について調べる -1≦x2 とする。 次の関数の連続性について調べよ。 (1) f(x)=x|x| (2)g(x)=-1 (x-1)2 (3)h(x)= [x] ただし,[]はガウス記号。 (x+1), g(1)=0 P.97 基本事項 重要 57, 58、 指針 関数 f(x)がx=αで連続limf(x)=f(a)が成り立つ。 また, f(x) がx=αで不連続とは [1] 極限値 limf(x) が存在しない XIA [2] 極限値 limf(x) が存在するが limf(x)=f(a) XIA のいずれかが成り立つこと。 解答 x-a 関数のグラフをかくと考えやすい。 099 2章 関数の連続性 (1) x>0 のとき f(x)=x2 x<0 のとき f(x)=-x2(1),(2)多項式で表された よって limf(x)=limx2=0, x+0 x+0 limf(x) = lim(-x2)=0 x-0 x→0 0 また f(0)=0 ゆえに limf(x)=f(0) よって, x=0で連続であり -1≦x≦2で連続。 (2) limg(x)=lim =8 x→1 x-1 (x-1)² 極限値 limg(x) は存在しないから 関数は連続関数であるこ とと p.97 基本事項 1 ③ に注意。 関数の式が変わ る点 [(1) ではx=0, (2) ではx=1] における連 続性を調べる。 なお (3) では区間の端点での連続 性も調べる。 x→1 -1≦x<1,1<x≦2で連続; x=1で不連続。 (3) -1≦x< 0 のときん(x)=-1, 0≦x<1のとき h(x)=0, [x] は x を超えない最大 の整数。 1≦x<2のとき h(x)=1, h(2)=2 よって limh(x)=-1, limh(x) = 0 ゆえに, 極限値limh(x)は存在しない。 x-0 x+0 x→0 limh(x)=0, limh(x)=1 ゆえに, 極限値 limh(x) は存在しない x→1-0 x→1+0 limh(x)=1, h(2)=2 X-2-0 x→1 ゆえに lim h(x)+h(2) x2-0 よって -1≦x< 0, 0<x<1, 1 <x<2で連続 ; x = 0, 1, 2で不連続。 (1) f(x)* 4 (2) g(x) 14 0 2 x -1 0 1 1 2 X (3) h(x) 入らない 2 1 fm?= f(-1) 12 -1 スー1+0 0 1 2 -1

回答募集中 回答数: 0
物理 高校生

これの⑷の問題で、 問題文に有効数字を合わせたら答えは2桁になりますが、どういう時に3桁で表せばいいのですか? 問題文に合わせる時と和と差、積と商の計算方法で出た答えにするのかわかりません、、、 問題文と計算結果の桁数の有効数字の桁数が大きい方にするっていうことなんですか?... 続きを読む

を右向き きに速さ 発展例題 2 等加速度直線運動 斜面上の点から, 初速度 6.0m/sでボールを斜面に沿 って上向きに投げた。 ボールは点Pまで上昇したのち, 下 降し始めて、 点0から 5.0m はなれた点Qを速さ 4.0m/s で斜面下向きに通過し, 点0にもどった。 この間, ボール 等加速度直線運動をしたとして, 斜面上向きを正とする。 (1)ボールの加速度を求めよ。 →発展問題 24 25 26 5.0m 6.0m/s ボールを投げてから,点Pに達するのは何s後か。 また, OP間の距離は何mか。 (3)ボールの速度と,投げてからの時間との関係を表すv-tグラフを描け。 (2) (4) ボールを投げてから、点Qを速さ 4.0m/sで斜面下向きに通過するのは何s後か。 また、ボールはその間に何m移動したか。 ( 6) ■ 指針 時間が与えられていないので, 「ぴーぴ²=2ax」 を用いて加速度を求める。 また, 最高点Pにおける速度は0 となる。 v-tグラフ を描くには,速度と時間との関係を式で表す。 ■解説 (1) 点 0, Q における速度, OQ 間 の変位の値を「v2-vo²=2ax」に代入する。 (4.0)-6.02=2xqx5.0 α=-2.0m/s2 (2)点Pでは速度が0になるので,「v=vo + at」 から、 0=6.0-2.0×t t=3.0s 3.0s 後 OP間の距離は, 「v-vo2=2ax」 から, 02-6.02=2×(-2.0) xx x=9.0m 1/2a」からも求められる。) (3) 投げてからt[s] 後の速度v [m/s] は, v = 6.0-2.0t グラフは,図のようになる。 「v=votat」から, v [m/s]↑ 6.0 OP間の距離 PQ間の距離 O 1 2 3 4 5 16 t(s) - 4.0 - 6.0 (4) 「v=vo+at」 から, t=5.0s 5.0s 後 -4.0=6.0+(-2.0) xt ボールの移動距離は, v-tグラフから, OP 間 の距離とPQ間の距離を足して求められ, 6.0×3.0 (5.0 -3.0)×4.0 + 2 2 =13.0m Point v-tグラフで,t軸よりも下の部分の 面積は、負の向きに進んだ距離を表す。 7m

回答募集中 回答数: 0
1/1000