学年

質問の種類

数学 高校生

数Ⅰの問題です 写真の青線の部分の意味がわかりません 教えてください

基本 例題 45 √3 が無理数であることの証明 00000 命題「n は整数とする。n' が3の倍数ならば,nは3の倍数である」は真で ある。これを利用して, √3 が無理数であることを証明せよ。 CHART & SOLUTION 証明の問題 直接がだめなら間接で 背理法 基本44 √3が無理数でない (有理数である)と仮定する。このとき、3=r(rは有理数)と仮 定して矛盾を導こうとすると,「3=の両辺を2乗して、3=r」となり、ここで先に進 めなくなってしまう。そこで,自然数 α, bを用いて3=1(既約分数)と表されると仮 定して矛盾を導く。 解答 √3 が無理数でないと仮定する。 このとき √3 はある有理数に等しいから, 1以外に正の公約 a 数をもたない2つの自然数α, bを用いて3 = と表される。 b ゆえに a=√36 両辺を2乗すると a2=362. ・① よって, αは3の倍数である。 α2が3の倍数ならば,αも3の倍数であるから,kを自然数 として a=3k と表される。 これを①に代入すると 9k2=362 すなわち 62=3k2 よって, 62は3の倍数であるから, 6も3の倍数である。 ゆえに αとは公約数3をもつ。 これはaとbが1以外に正の公約数をもたないことに矛盾す る。 したがって3は無理数である。 既約分数: できる限り 約分して, αともに1以 外の公約数がない分数。 inf. 2つの整数 α 6 の最 大公約数が1であるとき, αとは互いに素である という (数学A参照)。 下線部分の命題は問題 文で与えられた真の命 題である。 なお, 下線部 分の命題が真であるこ との証明には対偶を利 用する。

未解決 回答数: 1
1/1000