学年

質問の種類

物理 高校生

なんで(1)や(2)で有効数字が2桁になるんですか

基本問題 29 30 31 ○小球 ① 基本例題6 水平投射 物理 高さ19.6mのビルの屋上から, 小球を水平に速 さ 14.7m/s で投げ出した。 重力加速度の大きさ を9.8m/s2 として、次の各問に答えよ。 14.7m/s (1) 投げ出してから, 地面に達するまでの時間 を求めよ。 濃度を 解説動画 基本問題39 x 第 No. 力学Ⅰ Date ないので, 「v2=2gy] √2×9.82 =13.8m/s 14 m/s 落とした」 とは 初 床である。 の中にある数値を 37. 19.6= 2=4.0 ある。 t = ±2.0s t0 なので2.0s は解答 に適さない。 したがって 2.0s (2) 小球は,ビルの前方何mの地面に達するか。 (3) 地面に達する直前の小球の速さを求めよ。小の 指針 投げ出した位置を原点とし, 水平右 向きにx軸,鉛直下向きにy軸をとる。 小球の運 動は, x方向では等速直線運動, y方向では自由 落下と同じ運動をする。 解説 (1)地面のy座標は19.6mである から,「y=1/29t2」を用いて、高さはいくらか 1/2×9.8× 地面 (2) 地面に達するまでの2.0秒間, 小球は,水平 方向に速さ 14.7m/sの等速直線運動をする。 29 m x=vxt=14.7×2.0=29.4m/ (3) 鉛直方向の速度の成分 vy は, vy=gt=9.8×2.0=19.6m/s 小球の速さ [m/s] は,水平方向と鉛直方向の 速度を合成し,その大きさとして求められる。 =√ox2+vy^2=√14.72+19.62 (4.9×3)+(4.9×4)=4.9√32+42 [m=4.9×5=24.5m/s 25m/s ( 34, 35, 36,37 ① 基本例題7 斜方投射 物理 Sms.es & 基本問題 40 41 42 Em/s/ 水平な地面から,水平とのなす角が30℃の向きに、 速さ40m/sで小球を打ち上げた。 図のようにx軸, *9.8m/s2 として 40m/s JJ \m 30°(1) x 地面 例

回答募集中 回答数: 0
数学 高校生

最後の答えの部分なんですけど、なんでaに5と-5が=として含まれるんですか?含まれたらこたえが四つになりませんか?

例題 重要例 120 連立2次不等式が整数解をもつ条件 000 xについての不等式x-(a+1)x+α < 0, 3x2+2x-1>0 を同時に満たす整数x がちょうど3つ存在するような定数αの値の範囲を求めよ。 指針 [摂南大〕 基本 37, 117 ①まず,不等式を解く。 不等式の左辺を見ると、2つとも因数分解ができそう。 なお,x2(a+1)x+α<0は文字αを含むから,αの値によって場合を分ける。 ②数直線を利用して、題意の3つの整数を見定めてαの条件を求める。 CHART 連立不等式 解のまとめは数直線 解答 x²-(a+1)x+a<0 を解くと a<1のとき a<x<1 a=1のとき 解なし α>1のとき 1 <x<a 3x2+2x-1>0を解くと (x-a)(x-1)<0 から ① (x+1)(3x-1)>0から x<-1, < x ...... ② 3 ① ②を同時に満たす整数xがちょうど3つ存在するの は α <1 または α>1 の場合である。 02 (1 α=1のとき, 不等式は (x-1)<0 これを満たす実数 x は 存在しない。 実数 A に対し A≧0は常に成立。 A'≦0 なら A=0 A'<0 は 不成立。 [1] α <1のとき 3つの整数xは x=-4, -3, -2 よって -5≦a-4 [2] α>1のとき 3つの整数xは x=2,3,4 [1] [2] -51-4-3-2-1 0 1 x a 3 '13 -101 2 4 x よって 4<a≦5 小 1 a 3 [1], [2] から, 求める α の値の範囲は -5≦a<-4,4<a≦5 3章 <-5<a<-4としないよ うに注意する。 a<x<-1の範囲に整数 3つが存在すればよいか ら, α=-5のとき, -5<x<-1となり条件 を満たす。 [2]のα=5のときも同 様。 13 2次不等式 不等号にを含むか含まないかに注意 上の例題の不等式が x2-(a+1)x+a≦0,3x2+2x-1≧0となると, 答えは大きく違ってく る (解答編 p.96 参照)。 イコールがつくとつかないとでは大違い!! -850 (0)=(x2) xについての2つの2次不等式 x²-2x-80,x2+(a-3)x-3a≧0 を同時に満たす整数がただ1つ存在するように, 定数 αの値の範囲を定めよ。 p.219 EX86

回答募集中 回答数: 0
1/1000