学年

質問の種類

数学 高校生

なぜ、ピンクのマーカの傾きから、Y切片の最大が、わかるのですか?よろしくお願いします

口 をまとめたものである。 製品X 製品Y 1日に仕入れ可能な量 原料α 2kg 5kg 20kg 原料 b 3kg 24 kg 標準プラン100共通テスト 問題50] ある工場では2種類の製品 X,Yを製造している。 次の表は ・各製品を1kg 製造するのに必要な原料 α, b, c の量 ・各原料の1日に仕入れ可能な量 各製品の1kgあたりの利益 原料について 04y12 すなわち (1)①から1/3xy-1232x+4 よって、領域 Dは図の斜線部分のようになる。 ただし、境界線を含む。 よって、与えられた10個の点のうち、 (1,3),(2,3),(4, 2), (5, 2), 点 (7,1) の5個が領域Dに含まれる。 (2) 1日あたりの2つの製品の利益の合計は6x+9y万円であ る。 9 2 原料 4kg 12kg 6x+9y=k ④ とおくと,これは傾きが 切片 (7, 1) 利益 6万円 9万円 が 今の直線を表す 。 x, yは実数とする。 1日に製品 X を xkg, 製品 Y をykg 製造するとき, 1日に仕入れ 可能な量から、次の不等式①~③ が成り立つ。 9 + アスナイy 20 ① 直線 ④ が領域 D と共有点をもつようなkの値の最大値が 利益の合計の最大値である。ただし,各原料は1kg単位で使用するから, 領域Dとの 共有点は格子点に限る。 したがって, 直線 ④ が領域 D内の点 (7, 1) を通るとき,その (1) 連立不等式①〜③の表す領域をDとする。 次の10個の点のうち、領域Dに含ま れる点はオ 個ある。 ⑤ 切片 を1kg 製造するとき利益の合計は最大で, 51万円である。 次に, 原料が20kg しか仕入れられないとき 03x20 20 3 は最大となり,k=6・7+9・1=51 である。つまり、製品X を 7kg, 製品 Y (0, 4), 1, 3), 点 (2,3), 点 (3,3), 点 (4,2), (5,2), (6,2), 点 (7, 1), 点 (8, 1), (9,0) (2) 各原料は1kg単位で使用するものとする。 1日あたりの2つの製品の利益の合計は カナ キ(万円) であるから、 1日の利益の合計を最大にするには製品 X を ク kg, 製品 Y をケ kg 製造すればよく, 利益の合計はコサ万円である。 ところがある日、 原料の仕入れ先から 「今日は,原料が20kg しか仕入れられな kg, い。」との連絡があった。 この日の利益の合計を最大にするには製品 X を シ 製品 Y を ス kg 製造すればよく, 利益の合計はセソ万円である。 (3) 各原料が100g単位で使用できる場合は, 1日の利益の合計を最大にするには製品 X を タ kg 製品Y を チツテg 製造すればよく, 利益の合計は トナ万 千円である。 解 各原料の1日に仕入れ可能な量の条件から 原料 α について 02x+5y 20 ....... ① 原料について すなわ 10 このとき, 連立不等式①、③, ⑤の表す領域は右の図の斜 線部分のようになる。 ただし,境界線を含む。 よって,直 線 ④が領域内の点 (5,2)を通るとき,その切片は最大と なり,k=6・5+9.2=48 である。 つまり、 製品 X を 5kg, 製品 Y を 2kg 製造するとき利益の合計は最大で, 48万円 である。 (3)各原料が100g単位で使用できる場合は, 直線 ④ の傾き 3 と領域 D の境界線 2x+5y=20の傾き1/3について 21/31/3であるから,直線 ④は領域 D内の点 (8, を通るとき,その切片は最大となり, 4 4-5 =6.8+9=55.2である。つまり、製品X を8kg,製 yt 20 品を 12/3 kg すなわち 800g 製造するとき利益の合計は最大で55万2千円である。

未解決 回答数: 1
数学 高校生

Focus Gold 数学II 例題98 写真の赤線部はなぜ成り立つのですか?

例題 98 円外の点から引いた接線(2) 2円の方程式 ***** x+y=5に点 (31) から接線を2本引く。そのときの2つの接点 P,Q とするとき,直線PQ の方程式を求めよ。 [考え方 接点の座標をP(x, yì), Q(x2,y2) とおいて求める 解答 接点をP(x1,yi), Q(x2,y2)とすると、 点Pにおける接線は, xx+y=5 3x+y=5Q...① 3x2+y2=5... ② これが点 (31) を通るから, 点Qにおいても同様にして ①②より、点P. Qは直線 3x+y=5 上の点である 2点PQ を通る直線は1本に決まるので、直線 PQ の方程式は, 3x+y=5 (別解) 点R(3,1) とする. △OPR と △OQR は合同な三角形 だから、対称性より, OR⊥PQ 円x+y=r上の 点(x1, yi) における 接線の方程式 xx+y=r YA R(3, 1) √5- P P (3. 0 x x 1Q これより直線PQの傾きは3で あるから kを実数として, 直線 PQ は,y=-3x+kとおける 0 1QS 原点と直線 PQ の距離 dは, d= |-k| k √32+12 10 ここで 直線 OR と直線 PQ の交点をSとすると, (直線ORの傾き) (直線PQの傾き) 図より, k0 △OPR∽△OSP であり, OR=√10 OP√5OS= k ∠POR = ∠SOP, √10 ∠OPR = ∠OSP だから5:10:5 k=5 10 OP: OS=OR: 0 よって、 直線 PQ の方程式は、 y=-3x+5 Focus 円外の点(x,y) から円x+y=r" に引いた接線の 2 接点を通る直線は, xox+yoy=r.2 (極線) 注 <証明> 接点を (x1,y1)(x2,y2) とすると, 接線はxx+yy=rx2x+yzy=r YA (xo, yo) (x, y) となりともに点(x,y) を通るから, xix+yiyo=r2, x2x+yayo=r2 (*) O X2Y2 ここで, 直線 Xox +yoy=r を考えると、 (*)より(x,y) (x2,y2) はこの直線上の点である。 よって, 求める直線は, xox +yoy=r(証明終) 同様に考えて、円外の点(x0,yo)から円(xa)(y-b)=rに引いた接線 の2接点を通る直線の方程式は, (xa)(x-a)+(yo-b)(y-b)=r 練習x+y=10 に点(5, 5) から接線を2本引く。 そのときの2つの接点を結 98 直線の方程式を求めよ。 ***

解決済み 回答数: 1
数学 高校生

確率の問題です。 自分はPを使わずに計算しようとしたのですが、私の解答の(ⅲ)(ⅳ)で参考書の答えと違っていました。 自分の式はどこから間違っているか教えてほしいです🙇

例題 190 同じものを含む順列と確率 1 確率の基本性質 383 **** T, 0, H, O, K, U, A, 0, B, A の 10 文字から何文字か取り出し, 横1列に並べるとき, 次の確率を求めよ. (1) 10 文字を横1列に並べるとき,どの2つの0も隣り合わない確率 (2)10文字の中から6文字を1列に並べるとき,どの2つの0も隣り合 わない確率 考え方 確率を考えるときは, 0, 02, 03, A1, A2 として, すべて異なるものとして考える (同様の確からしさ). 解答 (1) T, 01, H, Oz, K, U, A1, 03, B, A2の10個を 1列に並べる並べ方は, 10! 通り どの2つの0も隣り合わない並べ方は,まず0を除 いた7文字を並べ、 さらに7文字の間と両端の8箇所 から3箇所を選んでO1, Oz, 03 を並べるときで, 7!×gP3 (通り) 計算しない. 確率なので, あとで 約分する. 7!×P3. 7!×8・7・6 よって,どの2つの0も隣り合わない確率は, 7 10! 10・9・8×7! 15 (2)10文字の中から6文字を1列に並べる並べ方は, 10P6通り (i) 6 文字のうち0が3つのとき P3×4P3 (通り) (i) 6文字のうち0が2つのとき P4×32×5P2 (通り) (ii) 6文字のうち0が1つのとき 7P5X3C1×6P1 (5) (iv) 6文字のうち0が含まれないとき P6通り よって, (i)~(iv)より, 求める確率は, P3×4P3+ P4×32×5P2+P5×3C1×6P1+P6 ^ ^ ^ ^ ^ ^ ^ ^ 7!X&P3 約分しやすく工夫す る。 0の数によって順列 の総数が異なるため、 場合分けして考える. ☐ ☐ ☐ ^ ^ ^ ^ 7P3×4P3 ^ ^ ^ ^ ^ 7P4X3C2X5P2 ↑ 01 02 03 のうち, どの0を選ぶか. 7 10 10P6 Focus 確率を考えるときは、 同じものも区別する (同様の確からしさ) 第7章

解決済み 回答数: 1
現代文 高校生

国語の「光の窓」という小説なのですが、問題が 「暗闇の中に差し込む光」について、これを比喩的に表現している言葉を本文中6字で抜き出して答えなさい。 ⤴︎これを教えて頂きたいです。

光の窓 家の雨戸には、横並びに五つか六つ、細長い小窓が付いていた。 窓全体を覆う戸板が で、それをずらすことで開閉できる。雨戸を閉めても、外の様子をのぞくことができ 換気の役目も果たしていただろう。こういう窓を「無双窓」とよぶというのは、後 って知ったことだ。 双窓は子供部屋にもあった。私と妹は、その六畳ほどの狭い和室で寝起きし、宿題も というふうだった。以前は嫁ぐ前の叔母姉妹の部屋だった。 板の微妙なずれ方によって、朝、そこから、 まぶしい光の侵入がある。暗闇の中に差 込む光の模様は、一日として同じことはなかった。 光のトンネルの中に浮かび上がる、きらきらと舞う無数のほこり。 それがおもしろくて いつまでも見ている。そんな子供はどんな時代にもいるはずだ。 110 5 私は、あのとき何を見ていたのか。舞うほこりに見とれていたのか。 いや、光によって 照らし出されたものよりも、通過する光そのもの、光の「働き」のほうに魅せられたので はなかったか。 見るとは実に不思議なことだ。視覚を通して何かを「見る」とき、私たちはいったい何 を見ているのだろう。木だ、空だ、花だと、一つ一つ認識しながら見る場合はいい。そう ではなく、目を開けて何かを見ていても、頭は別のことを考えているということがある。 例えば壁の染みに、染みから想起された全く別の、過去のある出来事を見ているというこ とがある。 視覚の力は圧倒的だが、ほかの感覚に引きずられるとき、目を開けていながら、視界が 空っぽになり、見えている眼前の風景を見ていないということにもなるのはおもしろい経 験だ。 それでも、目が見える場合には、どうしたって見えてしまうし、見てしまうのだから、 その経験は長くは続かない。それが大人の肉体である。今、私は見ている、見ている私が いる、というふうに自意識も動き出してしまう。 こんぜん 子供の頃はそうではなかった。視覚も聴覚も嗅覚も触覚も、五感がもっと渾然と溶け合っ ていて、もっと放心してものを見ていた。我を忘れて、一個の感覚の器として、世界の中 に一人あった。幼年の「からだ」は泥のようになまめかしい。 5 10

未解決 回答数: 1
1/845