学年

質問の種類

経営経済学 大学生・専門学校生・社会人

問題114〜132の所をどうやって計算するのかわかりません。わかる所だけでいいのでよろしくお願いします🙏

ある。 114. 消費関数がC=50+0.8(Y-T) であるとしよう。 この消費関数で 「0.8」 となっている係数のこ とを、 限界消費性向という。この場合、市場利子率を一定と仮定すると、政府が5兆円の 減税をすることで、GDPは 20兆円 だけ増加する。 115. 消費関数がC=50+0.8(Y-T)であるとしよう。 この消費関数で 「50」 となっている項のことを、 基礎消費 という。 また、 市場利子率が一定と仮定したとき、 政府が財政支出を 10 兆円増 加すると、GDPは50兆円だけ増加する。 116. 消費関数がC=50 +0.8(Y-T)であるとしよう。 この場合、 市場利子率を一定と仮定すると、 輸 出が10兆円増加することで、 GDPは 50兆円 だけ増加する。 117. 今、 限界消費性向が 0.8 であるとしよう。 市場利子率が一定と仮定すれば、 民間企業の設備投資 が3兆円増加することで、 GDPは 15兆円 だけ増加する。 また、 輸出が10兆円増加す ることで、 GDP は 50兆円 だけ増加する。 118. 今、 限界消費性向が 0.75 であるとしよう。 市場利子率が一定と仮定すれば、財政支出が5兆円増 加することで、 GDPは 20兆円だけ増加する。 119. 限界消費性向が 0.65 としよう。 市場利子率が一定と仮定すれば、 輸出額の増加 10兆円によって、 GDPは 兆円だけ増加する。 28.6 120. 限界消費性向が 0.6であるとしよう。 市場利子率が一定と仮定すれば、 3兆円の減税が行われるこ とで、GDPは 4.5兆円 だけ増加する。 また、 投資額が5兆円増加すると、 GDPは 12.5兆円 だけ増加する。 121. 限界消費性向が 0.7であるとしよう。 市場利子率が一定と仮定すれば、 5兆円の減税が行われるこ とで、GDPは 11.7兆円 (小数点以下何桁でも可、分数でも可) また、 輸出が1兆円増加すると、 GDPは 3.3兆円 (小数点以下何桁でも可、 分数でも可) 122. 消費関数 C=c+c, (Y-T)の係数c を基礎消費とよび、係数を だけ増加する。 だけ増加する。 限界消費性向 とよぶ。 6 もし、市場利子率が一定だとして、 q=0.6のとき、政府の財政支出増加 (AG=3兆円)によって、 GDPは 7.5兆円 だけ増加する。 また、もしc = 0.75 ならば、 減税 (AT-2兆円)にともなって、 GDP は 6兆円 だけ増加する。 このように、 財政支出増加額や減税額以上にGDPが増加することを 乗数 |効果という。 123. 今、 限界消費性向が 0.75 であるとしよう。 市場利子率が一定と仮定すれば、 輸出が2兆円増加することで、 GDPは 8兆円 だけ増加する。 また、3兆円の減税が行われることで、 GDPは 9兆円 このように、 輸出額や減税額以上にGDPが増加することを だけ増加する。 乗数効果 という。 124. ケインズ型消費関数 C=co +c, (Y-T)を考える。 市場利子率が一定ならば、 c = 0.75 のとき、政府の財政支出増加 (AG=4兆円)によって、 GDPは 16兆円 だけ増加する。 また、 c = 0.8 ならば、 減税 (AT=-1兆円)にともなって、 GDPは 4兆円 だけ増加する。 125. 限界消費性向が 0.8 としよう。 市場利子率が一定と仮定すれば、 輸出額の増加 10兆円によって、 GDPは 50兆円 」だけ増加する。 126. 限界消費性向が 0.8 であるとしよう。 市場利子率が一定と仮定すれば、7兆円の減税が行われる ことで、 GDPは 28兆円 だけ増加する。 127. 今、 限界消費性向が 0.65 であるとしよう。 市場利子率が一定と仮定すれば、 20兆円の減税をす ることで、GDPは 37兆円だけ増加する。 128. 限界消費性向が 0.85 であったとしよう。 今、 家計の可処分所得が新たに8億円増加すると、とり あえず家計は消費を 6.8 億円増やし、貯蓄を 1.2億円増やす。さらに経済循環が無限に 続く結果、 GDPは 45.3億円増加する。 129. 今、 限界消費性向が0.9 であるとしよう。 市場利子率が一定と仮定すれば、 投資が 10兆円増加す ることで、GDPは100兆円だけ増加する。 また、10兆円の減税によりGDPは 90兆円だ け増加する。 130. 限界消費性向が 0.6 であるとしよう。 市場利子率が一定と仮定すれば、 5兆円の減税が行われる ことで、GDPは 7.5兆円 だけ増加する。 また、 投資額が2兆円増加すると、 GDPは 5兆円 だけ増加する。 131. 今、限界消費性向が 0.75 であるとしよう。 市場利子率が一定と仮定すれば、10兆円の減税をす ることで、GDPは 30兆円だけ増加する。 132. 今、 政府支出増加に関する乗数が3.5 であったとすると、 税に関する乗数は 133. 建設事業以外の目的で発行される国債を 赤字国債 (特例国債でも可) -2.5 である。 という。

回答募集中 回答数: 0
数学 高校生

182.2 k≦log10 N<k+1なので「ゆえに...」の部分を丁寧に書くと、 38.905≦log10 6^50<39より、38<log10 6^50<39であり、38.905≦log10 6^50<39の部分を解答では省略しているのですか? (38.905≦log1... 続きを読む

N<k logN<- 示し る。 基本例題 182 常用対数を利用した桁数, 小数首位の判断 ①①①①① logio2=0.3010, log103=0.4771 とする。 (1) 10g105, 10g100.006, logio√/72 の値をそれぞれ求めよ。 (2) 650 は何桁の整数か。 る。 1 / 2 \100 3 (3) HHOTTOMNE 指針 (1) 10 で, 10g10 2, 10g103 の値が与えられているから,各対数の真数を2,3, 10の累 乗の積で表してみる。 なお, 10g105の5は5=10÷2 と考える。 (2),(3) まず, 10g106% 10g10 を求める。 別解 あり 解答編p.181 検討 参照。 解答 を小数で表すと, 小数第何位に初めて0でない数字が現れるか。 scusa 01 p. 284, 2 「正の数Nの整数部分が桁⇔k-1≦loguN <k 正の数Nは小数第位に初めて0でない数字が現れる⇔-k≦1010N 【CHART 桁数,小数首位の問題 常用対数をとる 10 log. (1) 10g105=10g10=10g1010-logio2=1-0.3010=0.6990 logad = 10g100.006=10gio (2・3・10-3)=10g102+ 10g103-310g1010 = 0.3010+0.4771-3=-2.2219 ******** ゆえに logiu√72=10g10(23.32) 11 (310g102+210g103) 2 TOOTH ( 3×0.3010+2×0.4771) = 0.9286 (2)10g106505010g106=5010g10 (2・3)=50(10g102+10g103) 練習 ② 182 2\100 3 =50(0.3010+0.4771)=38.905 ゆえに 38 <10g10650 <39 よって 1038 <650 <1039 したがって, 650 は 39 桁の整数である。 (3) logi()100- =100(10g102-10g103)=100(0.3010-0.4771) 3 =-17.61 -18 <10g10 10-18< 100 2 <-17 <-k+1 3388520T AT 383 ROKS <10-17 10g1010=1 [重要] 10g15=1-10g102 この変形はよく用いられる。 1√Ã= A ² 53.0 ならば, Nの整数部分は (k+1) 桁。 100 2 よって *< ( 1 ) ¹⁰° < ゆえに,小数第18位 に初めて 0 でない数字が現れる。100mgor (2) 10MN <10%+1 (3) 10 N10-k+1 ならば, Nは小数第位 に初めて0でない数字が現 れる 881 logı2=0.3010, logw3=0.4771とする。 15' は桁の整数であり, ( 2 3 ) 100 は小数第1 1位に初めて0でない数字が現れる。 p.294 EX118 章2 5章 32 常用対数

回答募集中 回答数: 0
数学 高校生

183.1 10÷0.4771=20.95....となり、私は9を四捨五入して21.0...としたのですがこれでも大丈夫でしょうか??

286 SE 06 06 oras 0=8 基本例題183 常用対数と不等式180000 log103=0.4771 とする。 (1) 3" が 10桁の数となる最小の自然数nの値を求めよ。 00.0 orgol類 福岡エア 基本 18 (2) 3 進法で表すと100 桁の自然数Nを, 10進法で表すと何桁の数になるか、 指針 (1) まず, 3" が 10桁の数であるということを不等式で表す。 (2) (2) 進数Nの桁数の問題 不等式ん桁数-1≦N <h桁数の形に表す helbu ・・・・・・・・・改訂版チャート式基礎からの数学A 基本例題142 10年 3100-1≤N<3100 に従って、問題の条件を不等式で表すと 解答 (1) 3” が10桁の数であるとき 各辺の常用対数をとると ゆえに 10進法で表したときの桁数を求めるには, 不等式 ① から, 10″-1≦N <10" の形を たい。そこで,不等式 ① の各辺の常用対数をとる。 練習 183 9≦ 0.4771n<10 9 0.4771 10°≦3" < 1010 内 9≤n log103<10 よって ≤n<. したがって 18.8......<n<20.9...... この不等式を満たす最小の自然数nは n=19 Gorg (2) Nは3進法で表すと100桁の自然数であるか 3100-1N < 3100 すなわち 399 ≦N < 3100 各辺の常用対数をとると 1.005018 to 9910g 10 3 log10 N <10010g103 99×0.4771 ≦10g10N <100×0.4771 10 0.4771 ゆえに すなわち 47.2329 ≤log10 N<47.71mol)08 (8-8) 3 よって 1047.2329 ≦N < 1047.71 100.4771=3 ゆえに 1047 <N<1048 したがって,Nを10進法で表すと, 48 桁の数となる。 別解 10g103=0.4771 から ゆえに, 3% ≦N <3 100 から よって 1047.2329 ≦N < 1047.71 ゆえに (100.4771) 99 ≤N<(100.4771) 100 1047 <N < 1048 したがって, N を 10進法で表すと, 48 桁の数となる。 Nがn桁の整数 Saigof-Oこの不等式を満たす自 =(n=19, 20 であるが、 「最小の」という条件があ るので, n=19が解。 10'<10" LIO8OXE) gol (Ful 0108.0008 p=loga M⇒a=\l Dode= 10g102=0.3010, log103 = 0.4771 とする。 (1) 小数で表すとき, 小数第3位に初めて0でない数字が現れるように 自然数nは何個あるか。 (2) 10gs 2 の値を求めよ。 ただし, 小数第3位を四捨五入せよ。 また、この結果 利用して, 4'°を9進法で表すと何 基礎 AH 比べ 初め log 指針 Col 解 現在の とする 両辺の 40 ここて よって ゆえに したか 練習 ③ 184

回答募集中 回答数: 0
1/6