数学 大学生・専門学校生・社会人 5日前 6を解いてください お願いします 1. 次の関数を微分せよ. (1) sinhæ (2) cosh x (3) tanh (4) log x+1 X V (5) log tan (6) √(x²+1)4 (x2+2)2 x-1 2 解決済み 回答数: 1
数学 大学生・専門学校生・社会人 14日前 例題(2)を参考に問9の解答を教えてください。 加法定理を使うみたいです。 例題 4. (1) sin-1x=cos cos-1 (4/5) をみたす を求めよ. 1 (2) sin x+cos-1x=1/2 を示せ. 【解答】 (1) sin-1x=cos-1(4/5)=yとおくと,-/2y/2 かつ 0≦y ≦ だから 0≦y ≦ ™/2.cosy = 4/5 より x = siny = V1- cos2 y = 3/5. (2)sin1=yとおくと siny = /2/22) だから cOS (T/2-y)= siny = x. このとき 0 ≦™/2-y ≦ であるから cos-1x=/2-y=™/2-sin-1 となり,結論を得る. X 問7 次の値を求めよ. (1) sin-1 -1 /3 1 (2) cos -1 (3) tan V2 2 √3 (4) sin'(−1) (5) tan 1 -1 (6) lim tan X -1 問8 次の式をみたす を求めよ. IC (1) cos ・1 -1 x = tan √5 (2) sin 問9 tan 1 -1 +tan を示せ. 2 3 4 3-5 -1 = tan X 解決済み 回答数: 1
数学 大学生・専門学校生・社会人 28日前 式自体は合ってるとは思いますが、どう積分するのか分からない状態です。 出来れば1度、解いて見して欲しいです。 変数変換を使わない場合で計算して欲しいです! お願いします🙇♂️ A1. 1日(ズー)dedy [] (x²+ y²) dady, D = {(217) | 2²+y=≤ 1, x20, 120] 1. 変数変換を用いずに解け。 D ポーズ 国 Rosink exce 11-012 - Cosλ 102 2 (smx+y) g I [th (x²+8) Ly dx 解決済み 回答数: 1
数学 大学生・専門学校生・社会人 30日前 解き方教えて欲しいです A1. 11日(ズ+ye)dedy D={(x)x+ysl ( 1. 変数変換を用いずに解け。 ズーゾー B 特ーズ 0x=1 osysハーズ x= sink Exch SF (x² + y²) Ly dx 6 22 Cosz (sink + y²) Ly 0 = 近畿大学数学教室 x2020 解決済み 回答数: 1
TOEIC・英語 大学生・専門学校生・社会人 約2ヶ月前 acceptingは分詞で、形容詞の働きをするから()は名詞が入るという認識で間違い無いでしょうか? The management team at Elkin Department Store is famous for accepting (suggestions) f... 続きを読む 解決済み 回答数: 1
物理 大学生・専門学校生・社会人 約2ヶ月前 電磁気学のガウスの法則の問題なのですが、答えを見てもよく分かりません。 具体的には、解説の図が書いてある部分以降何を言ってるのかよく分かりません。図の理解もできないです。 誰かわかる方教えていただけないでしょうか🙇🏻♀️՞ 1.2 半径rの球面の中心0に点電荷g がある. 0を頂点とする頂角20の円錐によ って切り取られる球表面を貫く電気力束を求めよ。 1.3 半径αの球の中心に Qの大きさの点電荷があり,また,総量, -Q の電荷が 球全体に一様に分布している。 球の中心より距離rの点の電界はいくらか. 解決済み 回答数: 1
TOEIC・英語 大学生・専門学校生・社会人 2ヶ月前 写真の問題で、なぜBがだめなのか分からないので教えて頂きたいです!よろしくお願いします。 解答目標タイム 10. Workers at Global Motors have been volunteering ------- time recently in order to help the company survive. (A) theirs (B) themselves (C) their (D) them 解決済み 回答数: 2
数学 大学生・専門学校生・社会人 2ヶ月前 写真の(3)の増減表のプラスマイナスの部分がわからないです。微分、2階部分してそれが0になると仮定してx=何になるかはそれぞれわかりました。なぜプラスが入っているのかマイナスが入っているかがわからないです。 わかる方教えていただけるとめちゃめちゃうれしいです🙇🏻♀️՞よ... 続きを読む [1B-05] x を実数として, 関数 f(x) を f(x) =x'ex と定義する。 ただし, a は 負の定数である。 (1) f(x) 導関数 f'(x), 第2次導関数 f'(x) を求めよ。 (2)x→ +∞ のとき, f(x) の極限 lim f(x) を求めよ。 x → +∞ (3) f(x)の増減, 極値, グラフの凹凸, 変曲点を調べ, 増減表を書き, y=f(x) の概形を描け。 b <東北大学工学部〉 解決済み 回答数: 1
TOEIC・英語 大学生・専門学校生・社会人 2ヶ月前 (英語 添削) 「90字程度で、オランダと日本の教育制度を比べて文を書く」という課題です。添削をして頂きたいです。よろしくお願いします。 I compared the Dutch and Japanese school systems. I have two o... 続きを読む 解決済み 回答数: 1
数学 大学生・専門学校生・社会人 3ヶ月前 コーシーの積分定理Iを使った問題です。 (3)の詳しい途中式を教えて頂きたいです。 答えは-π(e-(1/e))です。 よろしくお願いします。 コーシーの積分表示Ⅰ (定理 3.4) を用いて, 次の積分を求めよ. 12-21=1 (1) (3) |z-i|=1 Z 2 -2 - dz sin z dz z-i (2) J. ez dz 2- - πi |z-πi|=1 (4) J. 2 dz 22+1 解決済み 回答数: 1