学年

教科

質問の種類

TOEIC・英語 大学生・専門学校生・社会人

この問題全ての解答教えて欲しいです!丸付いてるのは気にしないでください!

Let's Try! Part 5 空所に当てはまる選択肢を選びましょう。 1. We CheckLink ------- that gold is a sounder investment than stock or bonds due to the current currency crisis. (A) require (B) deliver (C) believe (D) press 2. Pacifico Company's new business plan looks like it will have a their revenue. (A) retiring (B) relative (C) collaborative (D) positive influence on 3. The noise of the construction in the warehouse was so loud that the client had to ------- himself three times before he could be heard. (A) recall (B) repeat (C) write (D) register tuo 4. The job which we had asked the technician to do was not done to our total -- (A) satisfaction (B) restoration (C) feedback (D) reference ------- to do in one operation. 5. The medical procedure used by the surgical team is too (A) sufficient (B) real (C) perfect (D) complex 6. It is imperative that the ------- be delivered before our client arrives at the office around noon. Too (A) package (B) manufacturer (C) mailman (D) currency aldesing (A) 7. The newly hired employee seems (A) previously (B) expensively capable of meeting our work expectations. (C) entirely (D) contrastively 8. The scientist's theory has been thoroughly tested and ------- to be reliable by many independent laboratories. (A) studied (B) proven (C) dedicated (D) combined (8) Frogs (A) aften med and

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

この問題の解答を作っていただけませんか。院試の勉強に役立てるつもりです。

問題1 粒子の質量 m、ばね定数K の1次元調和振動子を考える。波動関数 y=N.exp( 26 ) yo N=exp(-1211 ) exp(61) - 2017(6) 00: = non! を考える。ここで、yは1次元調和振動子の基底状態、*およびらはフォノンの生成および消滅演 算子 z は複素定数である。 (4) (5) の解答はm、 K を用いずに、講義でも用いた実定数 1 a = V h = = ħ² (mk) = ½ 4 mo z、および、hを用いて表せ。 (1)は規格化されたエネルギー固有関数y=(6) を用いて 8 1 y = N₂Σ n=0 Vn! と表すことができることを示せ。 (2)yが演算子の固有関数であることを示せ。 さらに固有値を求めよ。 (3)が規格化されていることを示せ。 (4)yによる位置演算子の期待値x、運動量演算子のx 成分 px の期待値を求めよ。 (5)位置のゆらぎ4x=√<yl(i-xy)、および運動量のx成分のゆらぎ4p=<yl(p.-P)^v)を を求めよ。 この結果を用いて、不確定性関係が満たされていることを確認せよ。 (6) 初期条件(0)=yの場合の時間に依存したシュレディンガー方程式の時刻 t での解をy(t) と 表す。B(t)=(y(t) (1) とする。 〈4 (1) 6y(t)) をB(t) を用いて表せ。 (7) B(t)の満たす微分方程式を導出し、その一般解を求めよ。 (8)時刻tでの解y(t)による、位置、運動量のx成分の期待値を求めよ。初期状態のzは z=rexp(i0)、 ここでおよび0は実数である、で与えられるとし、期待値を、a、r、 0、 w、 t、および、hを用 いて表せ。

回答募集中 回答数: 0
1/152