学年

教科

質問の種類

数学 大学生・専門学校生・社会人

至急です (4)のcを教えてください

問題1 連立1次方程式 Az=b について, 以 (7) 係数行列 A の階数を答えよ. 下の 1から 3 に当てはまるものを答 rank A = 7 えよ.ただし, 1 0 -1 0 -2 1 (8) 拡大係数行列 [46] の階数を答えよ. rank [Ab = 8 0 1 1 0 1 -2 A = b -1 0 1 1 1 3 (9) 次の文の 9 「には,「もつ」か 「もたない」 のいずれかが入る. ふさわしい方を答えよ. 2 1 -1 0 -3, 1 とする. (1) 係数行列 A の階数を答えよ. rankA= 1 (2) 拡大係数行列 [ Ab ] の階数を答えよ. rank[Ab]=| 2 方程式 Az=bは解を 9 問題4 以下の 10 |から 21 に当ては まるものを答えよ . (a) 問題1から問題3の方程式で、解が存在する (3)次の文の 3 「には, 「もつ」か 「もたない」 が一意に定まらないものは問題 10 であ のいずれかが入る. ふさわしい方を答えよ. る. 10 に当てはまる問題番号を数字で答 えよ. 方程式 Ax = bは解を 3 問題2 連立1次方程式 Aæ = bについて 以 下の 4から 6 に当てはまるものを答 えよ.ただし, -20 30 A = 1 -2 121 b = 2 (b) 問題 10 の解は x=vo+C1v1+C202 と表される.ここで, C1, C2 は,任意の定数で あり, ベクトル 20, 1, 02 は, 11 " 2 -4 1 52 とする. 0 5 vo= 12 0 (4) 係数行列 A の階数を答えよ. rankA= (5) 拡大係数行列 [ Ab]の階数を答えよ. 13 4 14 17 1 0 01= 15 02= 18 , rank[Ab] = 5 0 1 (6)次の文の 6 には, 「もつ」か 「もたない」 のいずれかが入る. ふさわしい方を答えよ. 16 19 と表される. 方程式 Azbは解を 6 問題3 連立1次方程式 Aæ=bについて,以 下の7から 9 に当てはまるものを答 えよ. ただし, (c) 問題 10 |の行列Aを係数行列にもつ同 次方程式 Az=0を考える. この方程式の解は, 20 である.また,その解はæ= 21 と表される. 20 には,「自明」または「非自明」のい ずれかが入る. ふさわしい方を選んで答えよ. 2 3 -1 A = -1 2 2 b = • 21 1 1 1 -2 とする. |に当てはまるものとして,ふさわし いものを以下から選んで記号で答えよ. (ア)(イ) U (ウ) C101+C202

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

といて欲しいです!!

数学演習Ⅰ (8) 1. 次の1次方程式を拡大係数行列を掃出すことによって解け。 また拡大係数行列の階数を答えよ。 (1) 3x - 2y = 5 (2) 5x-2y+z=1 3x +5y +2 = 13 (3) 2x +y +3z = 4x 2w 7w 5w (5) { 2. 次の1次方程式を解け。 (1) 7x + 3y = 0 (2) 3x - 2y + 4z = 0 2x -Y +4z = 0 (3) -x +y -3z = 0 +2y3z T 0 w +y 2 = 0 2w +2y +z = 0 W +2z 0 2w +x -2z = 20 3. 1次方程式 2x +3y 5 ax +y = b が (1) ただ一つの解をもつための、 (2) 解をもたぬための、 (3) 無限個の解をもつための a, b について また各々の場合の係数行列A、 拡大係数行列 A' の階数を答えよ。 さらに (3) の場合に解を求めよ。 4. 1次方程式 -2x +2y +3z = 4 T +y -4z = b ax +8y +z -6 が (1) ただ一つの解をもつための、 (2) 解をもたぬための、 (3) 無限個の解をもつための a, b について また各々の場合の係数行列 A、 拡大係数行列 A' の階数を答えよ。 さらに (3) の場合に解を求めよ。 5. 1次方程式 3-2y+4z=0 の解と、 集合 2 (-))--(1) y = C1 (23) -3 7 C1, C2 は任意 との共通部分を求めよ。 6. 1次方程式 T +2 = 0 2x +y +2 = 0 5x +ay +2z 0 が自明な解æ=y=z=0以外の解をもつためのa についての条件を求め、そのときの解を求めよ。 +7y +2 = 18 +y 一之 x+ +3x+4y -X +3y 444 x+ +2x -Y -2z 2w +3x -2y -4z -10w +2x -7y +3z 6w 8 +11y +5z = -2 -4 = -5 -2 271 -7 + C2

回答募集中 回答数: 0
1/2