学年

教科

質問の種類

経営経済学 大学生・専門学校生・社会人

マクロ経済 国民経済計算、産業関連分析の問題です。 答えが分からないものが多いのですが教えていただきたいです。

H19 特別区 次の表は、 封鎖経済の下で、 すべての国内産業がP. Q及びRの三つの産業部門に分割されている とした場合の産業連関表であるが、 表中のア~カに該当する数字の組合せとして、 妥当なのはどれか。 産 中 最終需要 総産出額 投入 P産業 Q産業 R産業 中 PR 10 30 ア 100 190 間 投 Q 産業 20 80 60 イ ウ R 産 業 40 90 90 170 390 付加価値 総投入額 エ 110 190 オ 310 カ ア イ ウ エ オ カ 1 50 150 310 120 190 390 250 150 320 120 190 3 60 160 310 120 140 89 390 390 4 60 160 320 F 70 140 400 5 60 160 310 70 140 400 R4 特別区 【No.29】 次の表は、 ある国の、 2つの産業部門からなる産業連関表を示したも のであるが、この表に関する以下の記述において、 文中の空所A、Bに該当する数 字の組合せとして、妥当なのはどれか。 ただし、投入係数は、全て固定的であると 仮定する。 産出 中間 要 最終 総産出額 投入 産業 ARI 50 産業ⅡI 国内需要 純輸出 50 ア 10 イ 中間投入 産業ⅡI 25 100 40 35 200 付加価値 75 50 投入額 150 この国の、現在の産業Ⅰの国内需要 「ア」は Aである。 今後、産業Iの国内需要 「」 が70%増加した場合、 産業Ⅱの総投入額 「ウ」は B 1%増加することになる。 A B I 40 6 2 40 8 3 40 24 4 80 46 5 80 68 H28 特別区 次の表は、ある国の農業と工業の2つの部門からなる産業連関表であるが、この表に関する記述と して、文中の空所A~Cに該当する数字の組合せとして、妥当なのはどれか。 ただし、投入係数はす べて固定的であると仮定する。 出 中間 要 投入 10 最 終 工業 国内需要 純輸出 20 10 0 要 産出額 40 中間投入 工業 20 40 10 80 貸金 5 5 付加価値 利 5 15 総投入額 40 80 この国の国内総生産はAである。 また、 農業の国内需要と工業の純輸出がそれぞれ5増加した 場合、農業産出額はB増加し、 工業の産出額は 増加する。 A B C 1 10 15 25 2 20 15 25 3 20 20 20 4 30 15 25 5 30 20 20

回答募集中 回答数: 0
経営経済学 大学生・専門学校生・社会人

図の横軸が古典派は労働量(N)[N=時間]なのにケインズ派では労働量(人)としているのはなぜですか?

できます 図表 2 供給曲線 のとき 雇いたい 過供給, きないと 3. 古典派の労働市場についての考え方 右下がりの市場の労働需要曲線(図表 21-4)と右上がりの市場の労働供給曲線 (図表21-8) を図表21-9に描きます。 古典派は,労働市場における需要と供給が 等しくなるように実質賃金率が決まると考え ます。いいかえれば, 実質賃金率が動くこと によって労働市場の需要量と供給量は等しく なります。 ですから、失業, つまり,超過供 給があっても,それは実質賃金率が (1) 1 Part Movie 134 図表21-9 古典派の労働市場 実質賃金率 失業 労働供給曲線 超過供給 (NS) H A ↓ B ENs=No 労働需要曲線 (No) CO 6 このように高いからであり、実質賃金率の下落 によって解消すると考えます。 ですから,経 済は常に完全雇用ということになります。 0- AD-AS分析・AD-AS分析 古典 (実質) 貨幣(名 いるのて N*労働量(N) 15. O 4. ケインズの労働市場についての考え方 ケインズは, 古典派の第一公準から導いた 右下がりの需要曲線を受け入れます。 しかし, 古典派の第二公準から導いた右上がりの供給 曲線は受け入れず, 貨幣 (名目) 賃金率 (W) は古典派が主張するようには自由に動かず, 下がりにくいとします。 これを貨幣 (名目) 賃金率の下方硬直性といいます。 ケインズの考えを図表21-10に描くと, 貨幣(名目) 賃金率の下方硬直性を表現する ために,縦軸は実質賃金率ではなく, 貨幣 (名目) 賃金率とします。 横軸は労働量です。 ケインズも古典派の右下がりの需要曲線は 受け入れているので、右下がりの労働需要曲 線 (ND)です。 供給曲線 (Ng)については貨幣(名目) 賃金率の下方硬直性を仮定するので,ここで はより貨幣 (名目) 賃金率は下がらな いとすると,供給曲線はWで水平の部分が 244 名目賃金率(W) では, いのでし Movie 135 不況期 図表21-10 ケインズの労働市場 せんから インズの 失業 || Ns J7 期 超過供給 W1 H A WE B ハッヒ ると言え インズ派 のではな 現実経済 のです。 • No 0 Ne 労働量(人)

回答募集中 回答数: 0
経営経済学 大学生・専門学校生・社会人

実質貨幣供給量の増加が資産の実質的な価値の上昇にどう繋がるのですか??

Chapt 19 [5] ピグー効果 そのような初期ケインジアンの主張に対 し、ピグーは,経済は物価の下落によって自 動的に安定化すると考えます。 ピグーは古典派に属する学者ですから,不 況で有効需要が少なく超過供給の状態であれ ば物価は下落すると考えます。その結果、実 質貨幣供給量は増加します。 貨幣は資産です から、資産の実質的な価値が上昇すれば消費 が増加し財の需要が増加すると考えます。 こ れは,政府支出による需要拡大と同様の効果 がありますからIS曲線をシフトさせ国民所 得を増加させます。 そしてこのプロセスは完 全雇用国民所得となるまで続きます。M + 補足 ピグーはミクロ経済学でも、 ピグ一税を 考案した人物として登場します。 + 補足 ケインズ型消費関数のように,消費は可 処分所得のみで決まるのではなく, 資産の 影響も受けるとしています。 用語 このように,物価の下落が実質貨幣量 を増加させて消費を増加させることをピ グー効果と呼びます。 グラフ化 graph これは,図表19-6, 19-7の拡張的 財政政策と同様の効果となります。 C 財政政策の効果 AY⭑A

未解決 回答数: 1
公務員試験 大学生・専門学校生・社会人

マクロ経済学です。(5)からの求め方がわかりません。 教えてください🙇🏻‍♀️🙇🏻‍♀️

問題6(答えだけでなく、計算式も示すこと。) 動学化された総供給曲線、動学化された総需要曲線、インフレ期待形成がそれ Π=5+Y-8 π = π° + Y - YF 動学化された総供給曲線 元 = 5 (Y-Y-1) 動学化された総需要曲線 TCⓇ = πC -1 インフレ期待形成 π:インフレ率 期待インフレ率 (今期においては、 π°= 5 とする。 Y : 完全雇用GDP (ここでは常に Y = 8 とする。) Y, : 1 期前に実現したGDP (今期においては、 Y-1 = 6 とする。) 1 : 1 期前に実現したインフレ率 (1) このようなインフレ期待形成の方法は何期待と呼ばれるか。 (2) 今期の動学化された総供給曲線をグラフ上に表わせ。 (縦軸と横軸の 変数を明示) [アル=ケ-3 カレン5-(4-6) |TV = 11-Y) (3) 上の (2) で使った図の中に、 今期の動学化された総需要曲線をグラ フ上に表わせ。 (縦軸と横軸の変数を明示) (4) 今期の均衡 GDP と均衡インフレ率を求めよ。 (5) 次の期において、 期待インフレ率はいくらになるか。 (6) 次の期において、 動学化された総供給曲線はどのようにシフトする か。 このシフトを図で示せ。 (7) 次の期において、 動学化された総需要曲線はどのようにシフトする か。このシフトを図で示せ。 3) 次の期の均衡 GDPと均衡インフレ率を求めよ。 次の期に経済が完全雇用に達したかどうかを確認せよ。

回答募集中 回答数: 0
経営経済学 大学生・専門学校生・社会人

テスト勉強のための練習問題です自分の解答が正しいかわからないので解答の手順も含めて解答をお願いします。

■問題1 ある工場を考える。 設定は次の通りである。 この工場では、労働者を雇い製品を組み 立てる機械を用いて製品を生産する。 この工場には、性能が異なる機械 A、B、C、 D がそれぞ れ1台あるとして、 それぞれの機械は労働者1人が操作する。 機械の性能は次の通りであるとし よう。 ● 機械 A: 1 時間あたり20個作ることができる ● 機械 B: 1 時間あたり 50個作ることができる ● 機械 C: 1 時間あたり100個作ることができる ● 機械 D: 1 時間あたり 200個作ることができる 工場の1日の稼働時間は9時から17時までの8時間であり、労働者が1日に労働できる時間は 最大で8時間までとする。 この工場では、労働者を何人か雇用して、その人たちに合計でL時間 働いてもらうとする。 (a) 労働者を雇って、性能の良い機械から順に使用してもらうという形で効率的な生産を行うと する。このとき、この工場で1日に作ることのできる製品の生産量と労働投入量Lの関係 を表す生産関数 y=f(L) の式を導出しなさい。 (b) 労働者の給料は時給制で、 1時間につきw=1200円を工場が支払うとしよう。 また、機械の 導入費用は4台セットで一括で24000円であったとしよう。 機械の導入費用を固定費用とし て、この工場の費用関数 C'(y) の式を導出しなさい。

回答募集中 回答数: 0
1/4