学年

教科

質問の種類

物理 大学生・専門学校生・社会人

物理です. 2番と4番を教えてください。 よろしくお願いします

応用物理II R4:課題1(担当:挽野真一) 間1 図1に示したように、バネ定数kの2つのパネ につながれた質量 m のおもりが床と接している場 合を考える。おもりがつり合いの位置から x だけ ずれたとする。原点0をつり合いの位置とすると 点0からxだけずれたとき、おもりと床との間の 摩擦力を無視するとして以下の問いに答えよ。 imm X 0 図1 バネ定数 kの2つのパネに質量 mのおも りがついている。. (1) おもりの運動方程式を立てよ。 (2) (1)の運動方程式の一般解を求めよ。 (3) 初期条件として、時刻1=0 のとき、x(0) = 0, dx =%を満たす解を求めよ。 問2 図のように、パネ定数kのバネに質量 m のおもりをつけた。バネが つり合いの位置にあるとき、おもりの位置は yo であった。おもりの位 置がyになるまで下に引っ張って、おもりを静かに放した。以下の問い に答えよ。ただし、重力加速度をg、空気抵抗は無視できるものとする。 (1) おもりの運動方程式を立てよ。 (2) (1)で立てた運動方程式の一般解を求めよ。 (3) おもりの速度がゼロとなる時刻を求めよ。 Yo y 問3 直線状に2つの同じ原子が結合している水素 H2 分子の振動現象を考える。ここでは、簡単のた め原子間の結合はバネ定数kのバネで結合されているとし、水素の質量を m として以下の問いに 答えよ。重力の影響は無視してよい。 (1) 図に示すように各原子が変位しているとして、各原子の運動方程式を立てよ。 (2) (1)で立てた運動方程式から分子の角振動数を求めよ。ただし、分子の重心は静止しているとし てよい。ヒント:原子間の相対運動を記述する運動方程 式に変形すると単振動の式と同じになる。 (3) エネルギー等分配則によって、温度 T の熱エネルギ ーkT/2 が振動のエネルギーになっているとして、その時 の振幅を求めよ。 水素 水素 imó X。 図、水素分子の古典モデル。 間4 質量mの質点がx軸方向に保存力Fを受けて運動するとき、質点の運動方程式は mx= F と与えられる。この運動方程式から力学的エネルギーが保存することを示せ。 00 m

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

距離1mの2点では2π/λの位相差! ってところがわかりません... 教えていただきたいです!

ーx[rad]の位相差があるということ! だから, 図の式は も,t=T\s]での位相が2元に対応しているからなんですね。本全 写真y=y(x)から動く波を出すそ~! 実は“一点集中"の単振動の式もy=Asintでなくy=Asinotとしたの ここではもう1つのグラフ, "写真”y=y(x)からy(x, t)を導いておきま 先では一点注目(ギャル)の単振動y=y(t)から波の式を出しましたが、 @IMAGE おでな y A1 しょう。 まずt=0の波形を図のようにします。 先に一点集中から導いたのと同じ波形で A →X -A す。…つまり, 結果も同じになるはずです よ。 2元 これはy=y(x)の形です。 詳しく書くとy=ーAsinーxです。 え!? y=-Asinx じゃないかって~!?? 数学では横軸がx[rad]だったので sinx でOKなのですが, 今やっているのはyーxグラフ!…横軸は位直 x[m」です。図を見ると横軸方向の位置x=1 (波長)の場所は数字Cは 2元でしたね(この sin の中のを位相といいます)。つまりx=0, Aのと では2元の位相差がある!距離1[m] の2点では 2元 の位相差! 原点と 位置xの点では2元 -x [rad] の位相差があるということ! だから, 図の 2元 y=-Asinxとなるんです。 入 も, t=T\s]での位相が2元に対応しているからなんですね。 さあ,次はt秒後の波です。 y=y(x, t) を求めるのがターゲットですよ。 速さぃの 波はt秒後にvtだけ右に動いているハズで y す。 これ布

回答募集中 回答数: 0