学年

教科

質問の種類

数学 大学生・専門学校生・社会人

(3)で①に-2分の3をかけたらダメなんですか? お願いします。

2年数学 過去問題を解く (2020(R2)) 年度 1月 ( 日( 配布 ① 次の | の中に適当な数または式を入れよ。 ただし (2), (5) は ①~③の番号で答えよ。 (1)s^²-18 を因数分解すると になる。 (2) 三角形ABCにおいて, ∠A<90" であることは、三角形ABCが鋭角三角形であるための . ① 必要十分条件である ③ 十分条件であるが必要条件ではない 10 -8 6 (3) S(s) はについての2次関数とする。 方程式∫(x)=0の解は1.3であり, S(0) 2 である。 放物線y f(x)の頂点のy座標は [ である。 (4) 三角形ABCの辺BC, CA を1:3に内分する点を それぞれP, Qとする。 線分 AP, BQ の交点をRとする。 AP13 のとき, AR- である。 2 0 (5) 下のヒストグラムはS市の30日間の最高気温のデータをまとめたものである。 ヒストグラムに 対応する箱ひげ図は である。 (日) Sif 4 6 8 10 12 14 16 18 20 (C) ② 必要条件であるが十分条件ではない ① 必要条件でも十分条件でもない (1) (+2)(49) =(+2)(22+3)(21-3)!! X (2) <A<90°鋭角三角形 12月脇形 【2年1月県下一斉模擬試験 】 【科目: 数学 単元名 1 I No. ( 4 ) ( 3 ) 宜( 号 氏名( 2 a = - ① H -1/(2x)+2 - 3f₁a-15²-17 +2 面倒)∠A=30°,<B=1200 よって、必要条件であるが十分条件でない② (³) f(a)= a (x+1)(x-3) (a: 12*) 255113. f(0)=0(0+1210-3) = -3Q=2 よって、ナッシー/(ベースメーン) =1+1+x+2 1012 14 16 18 20 (°C) 3 →8 X 4^-9 -9 → 4-18 -1 Q -3- (5) よって、頂点の座時はり 35¹1ht) fra) = − }(20-2) = 0 x=1 fev: -(1-2-3)= (4) ・メネラウスの定理より. QA =1 RP, BC x PB ca AR RP 4 xx=1 RP AP=13なので、AR=12/11 4~6°3 6°~80 1 8°~ 10⁰ 4 10~1283 12⁰~140 7 14° ~ 16° 9 16°~18° 2 1180~20° T Qi 中央値Q2は12~1 第1回分程改Q」は80~10 第3 〃 Q3は14~160 よって、② 1~7⑧9~516~22③3 24~30 Q2

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

電磁気学 問題3.1と3.2わかりません。解説お願いします🙇‍♀️

長い R 1.3 ガウスの法則 例題 3 ・一様に帯電した平面とガウスの法則 面密度」の電荷が一様に分布している無限に広い平面のまわりの電界を求め よ。 となる。よって 6 20 E=- E0 E 000 図1.10 ヒント】 電荷の分布する平面に垂直な円筒に対してガウスの法則を用いる。 【解答】 図1.10に示すような, 電荷のある平面に垂直な円筒を考え,これに対して ガウスの法則を適用する.ただし,この円筒の両底面は電荷の分布する面から等しい 距離にあるとする。 対称性より、電界は円筒の上下両面に垂直で,そこでの電界の大 きさは等しい。また,電界は円筒の側面とは平行の向きとなるので、円筒の底面積を S とすると, ガウスの法則は fe·ds=2E.S=OS - E to 6 13 080000 問題∞∞ fs of foo sofs of 3.1 例題3において, 面密度の電荷が一様に分布している無限に広い平面から 距離だけ離れた点Pにおける電界の大きさ o/2c のうち, 半分は点Pから距離 が20以内にある電荷によるものであることを示せ . 3.2 無限に広い2枚の平面が平行に置かれ, それぞれ面密度。および - で帯電 している。 平面によって分けられた各領域での電界を求めよ. I II III 0 3.3 電荷を帯びた薄板の表面付近において,電界の大きさを測定したところ5× 10 N/C であった。 電荷の面密度はいくらか. 31

回答募集中 回答数: 0