学年

教科

質問の種類

TOEIC・英語 大学生・専門学校生・社会人

今からこの問題のテストがあります! 答えを教えて頂きたいです!

I. mani"X" bnt Quiz 1al insmatste pniwallolantOpel llsw art no ftel mooooysterio Fill in the blanks with the appropriate words or phrases to match the following statement. 01. インターネットのない生活なんて想像もできない。 ) hardly imagine life without the Internet. ) 1 g to brossert) asyl as all anoutalbBQ rexland bed new pail nail art Innil bonteal V 30 ns ahenda sill lent benelque asinspo dT 80 nuzelmibe jut eg lon ed of ar leum and TO asamem Viimist lie yd have 02. コックピットは安全な場所どころではない。 The cockpit ( ) ( ) ( )( )( ) place. 03. 電話を切るやいなや、 また電話が鳴った。 No sooner ( ( oyoT yd ourpoind aew | 80 beaute all tudominib otomoomin bates Wo Hood art stelgmus al emot ansay wool 1.01 ) hung up than the phone rang again. 04. 愛というものは、言わば、心のための栄養である。LIGHmment na ro Love is, so ( ) ( ), a nutrient for the heart. bongenadyeing alt 05. 彼は毎晩誰かが事務所に残っていたらよいと提案した He ( ) that someone stay in the office every night. Vew art to to slam of soigston art live to draw all Co 06. 担保付きのローンから始めた方がよいと勧めたい。 I would ( ) that you start out with a secured loan. hom yde slevou a to poles conse of categ 07. 「ご用は承っておりますか」 「ありがとう。 ただ、 ぶらりとみているだけです」 "Are you (m) (i)?" "Thanks. I'm just browsing." nort 08. 先生が見えるまで、ロビーでお掛けになってお待ちになってください」 ) in the lobby while you wait for the doctor to arrive!" “Please be ( 09. パソコンがあれば、こんな手間はすべて省けますよ。 (パソコンを使えばこの手間はすべて省ける) Als) (c) you all this (c). A personal computer ( 10. 雨が激しく降っていたにもかかわらず、彼女は仕事に行った。 ) ( ) the heavy rain, she went to work. ( )( TO

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

積分の解き方が分かりません 教えて欲しいです🙇‍♀️

【7】2次関数 ける接線を + 16に2点A(3,10), B(5.-14)をとり y=-2x²+4x に 直線ABを1とする。 とんとなで囲まれ Bにおける接線を12, た部分の面積を 求めなさい。 Cとで囲まれた部分の面積をSとしたとき, S1 S2 を とし, 【8】 点A(1,-7)を通り2次の係数が-1である2次関数で, 2次関数 Cy=xに接す るものは2つある。 接点のx座標が小さい順に C1, C とする。 このとき、次の間 いに答えなさい。 (1) CとCの接点の座標, CとCの接点の座標をそれぞれ求めなさい。 (2) C, C., C2で囲まれた部分の面積を求めなさい。 【9】2つの2次関数 C1:y=x2-7x+10,C2: y=x^2+x+2の共通接線をと するとき,次の問いに答えなさい。 (1)の方程式を求めなさい。 (2) C1, Cz, 1 で囲まれた部分の面積を求めなさい。 【10】2つの2次関数 C1: y=x2-7x+10,Cz:y=x²+x+2の両方に接する 2次の係数が−1である2次関数をCとするとき、 次の問いに答えなさい。 (1) CとCの接点の座標, CとC2の接点の座標をそれぞれ求めなさい。 (2) C1, C,C で囲まれた部分の面積を求めなさい。 【11】 3次関数 Cy = 2x6x2 +5x+7上の点A(2,9) における接線を1とすると き,Cとで囲まれた部分の面積を求めなさい。 【12】 xy平面上の曲線 C: y=x11x²+21x-10 と直線l: y=-10x+11 で囲 まれた部分の面積を求めなさい。 【13】 xy平面上の曲線 C: y=x(x-1) と直線l: y=kx (0<k<1) で囲まれた 2つの部分の面積が等しくなるようなk の値を求めなさい。

回答募集中 回答数: 0