学年

教科

質問の種類

経営経済学 大学生・専門学校生・社会人

テスト勉強のための練習問題です自分の解答が正しいかわからないので解答の手順も含めて解答をお願いします。

■問題1 ある工場を考える。 設定は次の通りである。 この工場では、労働者を雇い製品を組み 立てる機械を用いて製品を生産する。 この工場には、性能が異なる機械 A、B、C、 D がそれぞ れ1台あるとして、 それぞれの機械は労働者1人が操作する。 機械の性能は次の通りであるとし よう。 ● 機械 A: 1 時間あたり20個作ることができる ● 機械 B: 1 時間あたり 50個作ることができる ● 機械 C: 1 時間あたり100個作ることができる ● 機械 D: 1 時間あたり 200個作ることができる 工場の1日の稼働時間は9時から17時までの8時間であり、労働者が1日に労働できる時間は 最大で8時間までとする。 この工場では、労働者を何人か雇用して、その人たちに合計でL時間 働いてもらうとする。 (a) 労働者を雇って、性能の良い機械から順に使用してもらうという形で効率的な生産を行うと する。このとき、この工場で1日に作ることのできる製品の生産量と労働投入量Lの関係 を表す生産関数 y=f(L) の式を導出しなさい。 (b) 労働者の給料は時給制で、 1時間につきw=1200円を工場が支払うとしよう。 また、機械の 導入費用は4台セットで一括で24000円であったとしよう。 機械の導入費用を固定費用とし て、この工場の費用関数 C'(y) の式を導出しなさい。

回答募集中 回答数: 0
経営経済学 大学生・専門学校生・社会人

経済学の投資の問題です。どうすればいいのか分からないので最初から教えてください( . .)"

E 学籍番号 1. ある企業で次のような設備投資計画を検討しています。 ← [← このとき次の問いに答えなさい。 ただし、①と②は四捨五入して1万円の位までで答えなさい。 ① 市場利子率が4%のとき、 この投資の予想収益の割引現在価値はいくらか。← it: e ママママ ② 市場利子率が8%のとき、 この投資の予想収益の割引現在価値はいくらか。 式: e ← 最新鋭の工作ロボット (耐用年数3年) を新たに導入する。 これによって、今 後3年間に、1年目 400万円、 2年目 300万円、 3年目 200万円、 (各年末に発生) の純収益が得られると見込まれる。 J 答え ③この工作ロボットの価格が800万円とすると、この投資計画は市場利子率が4%と8%のとき、NPV 基準に照らして行われるかどうかそれぞれの場合について答えなさい。 年後 軽経済学概論レポート課題① (投資) 14 氏名 2 で 3 2. 市場利子率6.93% で 800万円を借りて、1年目末に400万円、 2年目末に 300万円、 3年目末に 200 万円を返済すると、4年目の期首借入金残高はいくらになるか、下記の表を完成させなさい。 ま また、下の文章のカッコに適切な言葉を書きなさい。 800×(1+0.0693) e 44 答え 期首元利合計 800.00 455.44 期末元利合計 855.44 答え 返済額 400.00 (単位:万円) E 返済後残高 455.44 [← 実は、 1. の設備投資に関する内部収益率は6.93%である。この値と( が一致した場合、 各期の純収益で返済していくとちょうど元利合計を返済することがで きる。 また、市場利子率が4%のとき、この内部収益率の方が ( で、やはり内部収益率基準においても、 このときに投資は行われる。 )なる(p>r) の C

回答募集中 回答数: 0
経営経済学 大学生・専門学校生・社会人

問の1と2がわからないので教えていただきたいです。 ミクロ経済学の範囲です

問1.ある1種類の財の市場の部分均衡モデルを考える. 財の価格を p, 需要量を za と書くとき, 0p 100 を満たす 価格 p について (1) が成り立つと仮定する. また,この市場において財1単位を供給するために生産者が必要な限界費用は3で一定と 仮定し, 固定費用はないものとする.また, この財の生産量1単位当たり2単位の消費者余剰が減少すると仮定す る. この部分均衡モデルについて, 次の設問に答えよ。 ただし計算過程なども記述すること. Id=200-2p (1) この市場が完全競争市場の場合の均衡供給量, 均衡価格, 社会的余剰をそれぞれ求めよ. (2) 完全競争の場合に社会的に望ましい配分を実現するために必要なピグー税率を求めよ. (3) この市場が独占市場の場合の均衡供給量, 均衡価格, 社会的余剰をそれぞれ求めよ. (4) 独占の場合に社会的に望ましい配分を実現するために必要なピグー税率を求めよ. 問2. 複数期間を生きる家計の費額 貯蓄額の決定について,次の設問にそれぞれ答えよ. この問題では導出過程なども 記述すること. (1) 「第1期」と 「第2期」 の2期間を生きる家計の消費額・貯蓄額の決定を考える. 第1期の所得が 0, 第2 期の所得が300, 利子率が 10% と仮定する. 第t期の消費額をπt で表し, この家計の効用関数を u(x1, 2) = logx1+8log 2 (2) で表されると仮定する (ただし0<81) このとき, この家計の最適消費計画 (zi, i) を求めよ. (2) 「第1期」と 「第2期」 と 「第3期」 の3期間を生きる家計の消費額・貯蓄額の決定を考える. 利子率をrと仮 定する. 第期の消費額を It, 所得を m で表すとき, この家計の予算制約式を求めよ. ただし導出過程に おいて, 第1期の貯蓄額を 81, 第2期の貯蓄額を 82 と表すこと (なお予算制約式はT1,T2,T3, m1,m2,m,r の7つの文字で表すことができる). 問3. 政府はなぜ独占を規制する必要があるのか. 「厚生経済学の第1 基本定理」 の観点から論ぜよ.

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

至急🚨 帝京大学2022年の過去問の解説お願いしたいです🙇 どなたか数学が得意な方解説お願いします🙇

数学(総合) 経済・法・文・外国語・教育・医療技術・福岡医療技術学部 〔1〕次の にあてはまる数を求め, 解答のみを解答欄に記入しなさい。 ただし, 解答に根号が含まれる場合は根号の中の自然数が最小となる形とし,分母は有理化する こと。 また、解答が分数となる場合は既約分数で答えること。 (1) 整式(x+1)(x+3)(x-3)(x-9) + 16x2を因数分解すると (x2- ア イ となる。 x- (2) αを6-22 をこえない最大の整数とし, b=6-2√2-αとするとき 1 62 + +2= 62 ウ である。 (3) 集合A={9, a, a-3},B={1, 4, 26 + 1,62} について, ACBであり, a bの値がともに負であるとき, a = I b = オ である。 〔2〕次の にあてはまる数を求め, 解答のみを解答欄に記入しなさい。 ただし, 解答に根号が含まれる場合は根号の中の自然数が最小となる形とし, 分母は有理化する こと。また、 解答が分数となる場合は既約分数で答えること。 (1)a,bを定数とする。 放物線y=5x²ax+a+bの頂点が点 (2, 1) であるとき, b= であり、この放物線をx軸方向に3,y軸方向に1だけ平行移動し ウ である。 た放物線の方程式はy=5x2 + ア イ x+ (2) 2次不等式xx-2<0 を満たすすべてのが 2次不等式(x-a)(x-a-5) > 0 を満たすとき,定数aの値の範囲は設する際 as I オ Saである。 〔3〕次の にあてはまる数を求め、 解答のみを解答欄に記入しなさい。 ただし, 解答に根号が含まれる場合は根号の中の自然数が最小となる形とし, 分母は有理化する こと。 また, 解答が分数となる場合は既約分数で答えること。 円に内接する四角形 ABCD において, AB=5,BC = 3,CD=2,∠ABC=60° 2つの対角線 AC と BD の交点をEとする。 このとき, (1) AD= (2) BE ED 〔4〕次の (3) M = 0 1 p ア 3 BD = 10453 (3-2 PH エ であり, BE = E 4 5 イ 年 L 1 (1) 下の図があるクラスで行ったテストについての, 37人の得点の箱ひげ図である 四分位偏差は 四分位範囲は とき, このデータの範囲は イ ウ である。 四角形 ABCDの面積は にあてはまる数を求め, 解答のみを解答欄に記入しなさい。 ア オ 9 である。 a, b, 83, 9, 52, 79. 38, 41. 63. 35. である。 . 19 20 (点) (2) 次の10個からなるデータについて 中央値が48, 第1四分位数が38, 第3四分位 .b= エ オ である。 ただし, a < bとす 数が77であるとき,a=

回答募集中 回答数: 0