学年

教科

質問の種類

情報 大学生・専門学校生・社会人

Oracle certified Java Programmer Gold SE11 IT系ベンダー資格のOracle certified Java Programmer Gold SE11の資格勉強をしているのですが、もし、Javaに詳しい人がいるのでしたら、 第6章... 続きを読む

8. 次のコードをコンパイル、 実行したときの結果として、正しいものを びなさい。 (1つ選択) } var sql = "select * from item where id = ?": try (var ps = con.prepareStatement (sql)){ ResultSet rs = ps.executeQuery(); // do something 0件の検索結果が戻される 11. 次のコードをコンパイル、実行したときの結果として、正しいものを選 びなさい。(1つ選択) var sql = "select * from emp"; try (PreparedStatement ps = con.prepareStatement(sql){ ResultSet rsps.executeQuery(); System.out.println(rs.getString(2)); なお、 検索する対象となるempテーブルは、以下のレコードが登録さ れているものとする。 DEPARTMENT A. B. 全件の検索結果が戻される C. コンパイルエラーが発生する D. 実行時に例外がスローされる ID NAME 1 ALLEN R&D A. B. executeQueryメソッド C. executeメソッド D. executeBatch メソッド メソッドとして、最も適切なものを選びなさい。 (1つ選択) executeUpdate メソッド 19. JDBCを使ったデータベースプログラミングをしている。 UPDATE文を 実行した結果、 何件更新されたかを調べたい。 PreparedStatementの P314 2 SCOTT SALES 3 BILL ACCOUNTING A. 「1」 と表示される Marit B. 「2」 と表示される C. 「ALLEN」 と表示される D. 「SCOTT」 と表示される E. コンパイルエラーが発生する F. 実行時に例外がスローされる 第6章 JDBCによるデータベース連携 (問題) <->P316 P314 10. 次のコードをコンパイル、 実行したときの結果として、正しいものを選 びなさい。 (1つ選択) var sql = "delete from item where id = ?"; try (var ps = con.prepareStatement(sql))( ps.setInt(1, 1); ps.executeUpdate("update item set name="test' where id = ?'); 12. 次のコードをコンパイル、 実行したときの結果として、正しいものを選 びなさい。 (1つ選択) var sql = "select count(*) from item"; try (PreparedStatement ps = con.prepareStatement(sql)){ System.out.println(ps.execute()); なお、検索する対象となるitemテーブルは、以下のレコードが登録さ れているものとする。 A. DELETE文が実行される id name 1 B. UPDATE文が実行される banana 2 C. コンパイルエラーが発生する apple 3 D. 実行時に例外がスローされる P316 orange 298 ※次ページに続く 299

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

解答のところでシャーペンで①②と書いているところについてそれぞれ質問したいです。 ①a>2のaは何を表していますか? anのことですか?? a>2がan>2のことを示しているのならばa1>2ということは理解できますが、間違っていれば教えて欲しいです。 ②なぜan-an-... 続きを読む

3 単調数列とコーシー列 25 SO ★★ 基本 例題 020 数列の発散と収束する数列の有界性 α>2として,数列{a}を次のように定める。 (本 a=a2-2, an+1=an2-2 この数列は正の無限大に発散することを示せ。 指針 数列{an} が単調に増加することを示す。 解答 収束する数列{a} は有界である。 2より a2 数列{a} が正の無限大に発散することを示すために, bn= 1 束することを示す。 このことは,次の定理により示される。 定理 収束数列の有界性 として, 数列{6} が 0 に an PD (称号の向きは変asaz 262 以下, 帰納的にすべてのnに対して an>2 単調減少 an-an-1=(an-12-2)-an-i= (an-i+1) (an-1- -1-20 よって, 数列 {az} は単調に増加する。 ancian. (+(-2) 271-2) bn=- とおくと, 数列{6} は単調に減少する。 bn 1 an また,すべてのnに対してb>0であるから,数列{bm}は下に有界である。 よって, 数列{bn} は収束するから,その極限値をβとする。 an>2より bn<- 2 21 an=12-2より1_1 (正の内に発話していること。 b2-2であるから bn-12-bn-2bn bn-12 B2=β-233 より β(β+1)(2β-1)=0 [n] 06/1/23より β+1>0, 2β-1<0 よってβ=0 [s) これはliman=∞ であることを示している。 n→∞ 参考 定理 収束数列の有界性の証明 lima=α とする。 このとき、ある番号Nが存在して, n≧Nであるすべてのnに対して N11 |an-α| <1 となる。 三角不等式により|an|-|a|≦|an-αであるから,n≧N であるすべてのnに対して|an|<|a|+1 が成り立つ。 ここで, M=max{|a|+1, |a|,|az|,......., | av-1|} とする。 このとき,Nの場合も、n<N の場合も |an | ≦M が成り立つ。 よって, 数列{an} は有界である。 注意 この逆は正しくない。つまり数列{az}が有界であっても、収束するとは限らない。例えば、 =(-1)" で定義される数列{an} は-1≦a≦1から有界であるが,振動するから収束しない。

解決済み 回答数: 1