学年

教科

質問の種類

経営経済学 大学生・専門学校生・社会人

問題114〜132の所をどうやって計算するのかわかりません。わかる所だけでいいのでよろしくお願いします🙏

ある。 114. 消費関数がC=50+0.8(Y-T) であるとしよう。 この消費関数で 「0.8」 となっている係数のこ とを、 限界消費性向という。この場合、市場利子率を一定と仮定すると、政府が5兆円の 減税をすることで、GDPは 20兆円 だけ増加する。 115. 消費関数がC=50+0.8(Y-T)であるとしよう。 この消費関数で 「50」 となっている項のことを、 基礎消費 という。 また、 市場利子率が一定と仮定したとき、 政府が財政支出を 10 兆円増 加すると、GDPは50兆円だけ増加する。 116. 消費関数がC=50 +0.8(Y-T)であるとしよう。 この場合、 市場利子率を一定と仮定すると、 輸 出が10兆円増加することで、 GDPは 50兆円 だけ増加する。 117. 今、 限界消費性向が 0.8 であるとしよう。 市場利子率が一定と仮定すれば、 民間企業の設備投資 が3兆円増加することで、 GDPは 15兆円 だけ増加する。 また、 輸出が10兆円増加す ることで、 GDP は 50兆円 だけ増加する。 118. 今、 限界消費性向が 0.75 であるとしよう。 市場利子率が一定と仮定すれば、財政支出が5兆円増 加することで、 GDPは 20兆円だけ増加する。 119. 限界消費性向が 0.65 としよう。 市場利子率が一定と仮定すれば、 輸出額の増加 10兆円によって、 GDPは 兆円だけ増加する。 28.6 120. 限界消費性向が 0.6であるとしよう。 市場利子率が一定と仮定すれば、 3兆円の減税が行われるこ とで、GDPは 4.5兆円 だけ増加する。 また、 投資額が5兆円増加すると、 GDPは 12.5兆円 だけ増加する。 121. 限界消費性向が 0.7であるとしよう。 市場利子率が一定と仮定すれば、 5兆円の減税が行われるこ とで、GDPは 11.7兆円 (小数点以下何桁でも可、分数でも可) また、 輸出が1兆円増加すると、 GDPは 3.3兆円 (小数点以下何桁でも可、 分数でも可) 122. 消費関数 C=c+c, (Y-T)の係数c を基礎消費とよび、係数を だけ増加する。 だけ増加する。 限界消費性向 とよぶ。 6 もし、市場利子率が一定だとして、 q=0.6のとき、政府の財政支出増加 (AG=3兆円)によって、 GDPは 7.5兆円 だけ増加する。 また、もしc = 0.75 ならば、 減税 (AT-2兆円)にともなって、 GDP は 6兆円 だけ増加する。 このように、 財政支出増加額や減税額以上にGDPが増加することを 乗数 |効果という。 123. 今、 限界消費性向が 0.75 であるとしよう。 市場利子率が一定と仮定すれば、 輸出が2兆円増加することで、 GDPは 8兆円 だけ増加する。 また、3兆円の減税が行われることで、 GDPは 9兆円 このように、 輸出額や減税額以上にGDPが増加することを だけ増加する。 乗数効果 という。 124. ケインズ型消費関数 C=co +c, (Y-T)を考える。 市場利子率が一定ならば、 c = 0.75 のとき、政府の財政支出増加 (AG=4兆円)によって、 GDPは 16兆円 だけ増加する。 また、 c = 0.8 ならば、 減税 (AT=-1兆円)にともなって、 GDPは 4兆円 だけ増加する。 125. 限界消費性向が 0.8 としよう。 市場利子率が一定と仮定すれば、 輸出額の増加 10兆円によって、 GDPは 50兆円 」だけ増加する。 126. 限界消費性向が 0.8 であるとしよう。 市場利子率が一定と仮定すれば、7兆円の減税が行われる ことで、 GDPは 28兆円 だけ増加する。 127. 今、 限界消費性向が 0.65 であるとしよう。 市場利子率が一定と仮定すれば、 20兆円の減税をす ることで、GDPは 37兆円だけ増加する。 128. 限界消費性向が 0.85 であったとしよう。 今、 家計の可処分所得が新たに8億円増加すると、とり あえず家計は消費を 6.8 億円増やし、貯蓄を 1.2億円増やす。さらに経済循環が無限に 続く結果、 GDPは 45.3億円増加する。 129. 今、 限界消費性向が0.9 であるとしよう。 市場利子率が一定と仮定すれば、 投資が 10兆円増加す ることで、GDPは100兆円だけ増加する。 また、10兆円の減税によりGDPは 90兆円だ け増加する。 130. 限界消費性向が 0.6 であるとしよう。 市場利子率が一定と仮定すれば、 5兆円の減税が行われる ことで、GDPは 7.5兆円 だけ増加する。 また、 投資額が2兆円増加すると、 GDPは 5兆円 だけ増加する。 131. 今、限界消費性向が 0.75 であるとしよう。 市場利子率が一定と仮定すれば、10兆円の減税をす ることで、GDPは 30兆円だけ増加する。 132. 今、 政府支出増加に関する乗数が3.5 であったとすると、 税に関する乗数は 133. 建設事業以外の目的で発行される国債を 赤字国債 (特例国債でも可) -2.5 である。 という。

回答募集中 回答数: 0
化学 大学生・専門学校生・社会人

高分子の組成比率を求める問題なのですが、講義のスライドに載せられていた求め方が一貫性が無さすぎてどう解けばいいか分かりません。 3つのうちの1番上のもののAの比率の出し方、3つのうちの1番下のもののAの比率の出し方を解説していただきたいです。 2つ目が課題なのですが、これも... 続きを読む

5・2 ビニルポリマーの立体規則性の表示法 α 置換基 B-CH₂ n-ad () ベルヌーイ 確 ad (偶数) * ベルヌーイ 確 * triad isotactic, mm (I) heterotactic, mr (H) syndiotactic,rr (S) ++ (1-P)² 2P (1-P) dyad meso, (f) racemo,(s) tetrad立体規則性により周囲の環境が異なる P (1-P) pentad mmmm mmm mmmr ||||||||-2P(1-P) mmr H2P(1-P) b rmmr |||||||||-2 P³(1-P)² rmr P(1-P)² mmrm 2P(1-P) mrm P(1-P) b mmrr | 2P(1-P) rrm 2P(1-P) rmrm |||||| 2 P³(1-P) rrr ||||(1-8) rmrr ||||||||- 2P(1-P)³ mrrm rrrm |||||||-2P(1-P) 高分子合成化学 p.103 rrrr ||||||(1-P)* A B ポリ塩化 CI ポリイソブチレン CH Ħ CH3 H CH3 ビニリデン CH₂ C C C C C C I H CI H 01 CH3 H CH3 a b C (A=91 mol %) 164H 36H 54H 200 = 54 x:Aの mol %) 76H 120H ai a 3.8 3.6 63H (A=63 mol %) M 126H 130H a₁AAAA az BAAA(AAAB) 2 6(1-x) モル分率 as BAAB bi AABA(ABAA) ✗= (100-9)/100 = 0.91 bz BABA(ABAB) bs: AABB(BBAA) b: BABB(BBAB) C₁ ABA 左の共重合体の組成比を計 ABB(BBA)算せよ cs: BBB ||233H b領域の積分値の半分はA由来で、 半分はB由来 a: az as bi ba ba b C1 C2 C3 4 2 $ (ppm) 126/2 233 63+126/2 2x 2(1-x-y) 6(1-x)+2y 1.5ppmにピークを持つBのモル分率をy とすると、 b領域のBのモル分率は (1-x-y) 図5-15 塩化ビニリデン (A) - イソブチレン (B) 共重合体ならびに両単独 重合体の1H-NMR スペクトル (60 MHz S.Cl溶液 130°C) 16

回答募集中 回答数: 0
TOEIC・英語 大学生・専門学校生・社会人

今からこの問題のテストがあります! 答えを教えて頂きたいです!

I. mani"X" bnt Quiz 1al insmatste pniwallolantOpel llsw art no ftel mooooysterio Fill in the blanks with the appropriate words or phrases to match the following statement. 01. インターネットのない生活なんて想像もできない。 ) hardly imagine life without the Internet. ) 1 g to brossert) asyl as all anoutalbBQ rexland bed new pail nail art Innil bonteal V 30 ns ahenda sill lent benelque asinspo dT 80 nuzelmibe jut eg lon ed of ar leum and TO asamem Viimist lie yd have 02. コックピットは安全な場所どころではない。 The cockpit ( ) ( ) ( )( )( ) place. 03. 電話を切るやいなや、 また電話が鳴った。 No sooner ( ( oyoT yd ourpoind aew | 80 beaute all tudominib otomoomin bates Wo Hood art stelgmus al emot ansay wool 1.01 ) hung up than the phone rang again. 04. 愛というものは、言わば、心のための栄養である。LIGHmment na ro Love is, so ( ) ( ), a nutrient for the heart. bongenadyeing alt 05. 彼は毎晩誰かが事務所に残っていたらよいと提案した He ( ) that someone stay in the office every night. Vew art to to slam of soigston art live to draw all Co 06. 担保付きのローンから始めた方がよいと勧めたい。 I would ( ) that you start out with a secured loan. hom yde slevou a to poles conse of categ 07. 「ご用は承っておりますか」 「ありがとう。 ただ、 ぶらりとみているだけです」 "Are you (m) (i)?" "Thanks. I'm just browsing." nort 08. 先生が見えるまで、ロビーでお掛けになってお待ちになってください」 ) in the lobby while you wait for the doctor to arrive!" “Please be ( 09. パソコンがあれば、こんな手間はすべて省けますよ。 (パソコンを使えばこの手間はすべて省ける) Als) (c) you all this (c). A personal computer ( 10. 雨が激しく降っていたにもかかわらず、彼女は仕事に行った。 ) ( ) the heavy rain, she went to work. ( )( TO

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

積分の解き方が分かりません 教えて欲しいです🙇‍♀️

【7】2次関数 ける接線を + 16に2点A(3,10), B(5.-14)をとり y=-2x²+4x に 直線ABを1とする。 とんとなで囲まれ Bにおける接線を12, た部分の面積を 求めなさい。 Cとで囲まれた部分の面積をSとしたとき, S1 S2 を とし, 【8】 点A(1,-7)を通り2次の係数が-1である2次関数で, 2次関数 Cy=xに接す るものは2つある。 接点のx座標が小さい順に C1, C とする。 このとき、次の間 いに答えなさい。 (1) CとCの接点の座標, CとCの接点の座標をそれぞれ求めなさい。 (2) C, C., C2で囲まれた部分の面積を求めなさい。 【9】2つの2次関数 C1:y=x2-7x+10,C2: y=x^2+x+2の共通接線をと するとき,次の問いに答えなさい。 (1)の方程式を求めなさい。 (2) C1, Cz, 1 で囲まれた部分の面積を求めなさい。 【10】2つの2次関数 C1: y=x2-7x+10,Cz:y=x²+x+2の両方に接する 2次の係数が−1である2次関数をCとするとき、 次の問いに答えなさい。 (1) CとCの接点の座標, CとC2の接点の座標をそれぞれ求めなさい。 (2) C1, C,C で囲まれた部分の面積を求めなさい。 【11】 3次関数 Cy = 2x6x2 +5x+7上の点A(2,9) における接線を1とすると き,Cとで囲まれた部分の面積を求めなさい。 【12】 xy平面上の曲線 C: y=x11x²+21x-10 と直線l: y=-10x+11 で囲 まれた部分の面積を求めなさい。 【13】 xy平面上の曲線 C: y=x(x-1) と直線l: y=kx (0<k<1) で囲まれた 2つの部分の面積が等しくなるようなk の値を求めなさい。

回答募集中 回答数: 0