学年

教科

質問の種類

数学 大学生・専門学校生・社会人

先生が答えをくれません。 一応自分なりの答えは出したのですが、数学(計算も)あまり得意ではなく、自身がありません。 模範解答を作成していただきたく、質問を作成させていただきました。 何卒宜しくお願い致します。 ③

No9 1.次の広義積分が収束するか、 しないか判定し、 収束する場合はその値を求めよ. 2. 次の広義積分を求めよ. (1) (2) (1) (2) 「 L² (3) L dx 1+22 flog x da dx log sin Ode dx vi dx 1.² √ (12-18) (2-1) 1 x² No10 1. 次の広義積分が収束するようなパラメーターsの範囲を求めよ. (1) 22 (2² + y²) dxdy (3) (1 - cos(x² - y²)) dxdy (1) 120 rdy-ydx, (2) || ( ? – xy + y)dredy 1 2 +92 >1 [0.2m]×[0.2] 2. 次の広義積分が収束するようなパラメーター αβの範囲を求めよ. drdy 1242913083 z²+y² <1 No11 1. 道 Cを時計の逆周りの円+y² = d² とするとき、 次の線積分を求めよ. (2)zdy - yda x² + y² 2. 次の線積分を計算せよ. (1) 道C を z = cos0, y = sin0,z=02, 00 とする. Jo rdx+ydy + zdz, (2) 道 C2 を原点を通らない円 (æ-1)2 + y = 4 とするとき、 rdyydx Ja x² + y² 3. 次の R2 の一次形式のうち、 完全形式となるもの、つまり関数fにより、 df の形 に表せるものを選び、 そのような関数fを一つ与えよ. (1) dy+ydz (2) (3x²+y³)dx + 3xy²dy

未解決 回答数: 0
情報 大学生・専門学校生・社会人

ExcelのVBAの問題なのですが、コマンドボタンのデータ参照の④の問題が分からないので、教えてください。

総合演習ⅡI (2) コマンドボタン オブジェクト名: 参照 表示文字列 : データ参照 クリックしたら以下の処理をするイベントプロシージャを記述 ① テキストボックス英語、数学、国語の文字列に空欄文字 ( ''')を代入 ② Range 型オブジェクト変数結果を宣言 ③ ワークシート試験結果の受験番号データからテキストボックス受験番号の文字列を完全一致で検索し、 検索結果を結 果に代入 ④ 結果がNothingの場合はメッセージダイアログ (メッセージ : 該当データがありません、 ボタン : OKのみ、 アイコン : 警 告)を表示し(戻り値は使用しない)、 それ以外は該当データの英語、数学、国語の得点 (対象セルの値を参 照) をテキストボックス英語、数学、国語の文字列に代入 ※ヒント: Offsetを用いて対象セルを指定 オブジェクト名: 更新 表示文字列 : データ更新 クリックしたら以下の処理をするイベントプロシージャを記述 ① Range 型オブジェクト変数結果を宣言 ワークシート試験結果の受験番号データからテキストボックス受験番号の文字列を完全一致で検索し、 検索結果を結 果に代入 結果がNothingの場合はメッセージダイアログ (メッセージ : 該当データがありません、 ボタン: OK のみ、 アイコン : 警 告)を表示し(戻り値は使用しない)、それ以外はテキストボックス英語、数学、国語の文字列を該当データの英語、 数学、国語の得点 (対象セルの値)に代入 入試データ ※ヒント: Offsetを用いて対象セルを指定 受験番号 英語 JMS001 89 JMS002 58 JMS003 82 JMS004 98 JMS005 89 数学 69 96 60 77 88 国語 73 73 79 89 94 検索する受験番号 英語の得点 70 JMS003 数学の得点 80 データ参照 国語の得点 90 データ更新 × Microsoft Excel データがありません _OK

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

(3)で①に-2分の3をかけたらダメなんですか? お願いします。

2年数学 過去問題を解く (2020(R2)) 年度 1月 ( 日( 配布 ① 次の | の中に適当な数または式を入れよ。 ただし (2), (5) は ①~③の番号で答えよ。 (1)s^²-18 を因数分解すると になる。 (2) 三角形ABCにおいて, ∠A<90" であることは、三角形ABCが鋭角三角形であるための . ① 必要十分条件である ③ 十分条件であるが必要条件ではない 10 -8 6 (3) S(s) はについての2次関数とする。 方程式∫(x)=0の解は1.3であり, S(0) 2 である。 放物線y f(x)の頂点のy座標は [ である。 (4) 三角形ABCの辺BC, CA を1:3に内分する点を それぞれP, Qとする。 線分 AP, BQ の交点をRとする。 AP13 のとき, AR- である。 2 0 (5) 下のヒストグラムはS市の30日間の最高気温のデータをまとめたものである。 ヒストグラムに 対応する箱ひげ図は である。 (日) Sif 4 6 8 10 12 14 16 18 20 (C) ② 必要条件であるが十分条件ではない ① 必要条件でも十分条件でもない (1) (+2)(49) =(+2)(22+3)(21-3)!! X (2) <A<90°鋭角三角形 12月脇形 【2年1月県下一斉模擬試験 】 【科目: 数学 単元名 1 I No. ( 4 ) ( 3 ) 宜( 号 氏名( 2 a = - ① H -1/(2x)+2 - 3f₁a-15²-17 +2 面倒)∠A=30°,<B=1200 よって、必要条件であるが十分条件でない② (³) f(a)= a (x+1)(x-3) (a: 12*) 255113. f(0)=0(0+1210-3) = -3Q=2 よって、ナッシー/(ベースメーン) =1+1+x+2 1012 14 16 18 20 (°C) 3 →8 X 4^-9 -9 → 4-18 -1 Q -3- (5) よって、頂点の座時はり 35¹1ht) fra) = − }(20-2) = 0 x=1 fev: -(1-2-3)= (4) ・メネラウスの定理より. QA =1 RP, BC x PB ca AR RP 4 xx=1 RP AP=13なので、AR=12/11 4~6°3 6°~80 1 8°~ 10⁰ 4 10~1283 12⁰~140 7 14° ~ 16° 9 16°~18° 2 1180~20° T Qi 中央値Q2は12~1 第1回分程改Q」は80~10 第3 〃 Q3は14~160 よって、② 1~7⑧9~516~22③3 24~30 Q2

回答募集中 回答数: 0