学年

教科

質問の種類

物理 大学生・専門学校生・社会人

III-1(4)を教えてください。

III. 強さの定常電流が作る磁場は、次のビオサバールの法則で与えられる。 点Sのまわりのds部分を流れる電流が点Pに作る磁場dHは、 I ds x r' 4T ¹3 (1) で与えられる。ここで、はSからPに向かうベクトルSP = r 。下の左図参照。 dH= I Sas P III-1. 強さの無限直線定常電流が軸上を、軸の正の向きに流れている場合を考える。 上の左図。 円筒座標系において、点Pの円筒座標を(p,d,z) とし、 その点での規格化された 基底ベクトルをeprepez とする。 円筒座標 (p,Φ, z) の点Pに作られる磁場H (p,p, z) は、 ed の向きであり、磁場のe, 成分, Ho は pのみに依存する、 すなわち H(p, o, z) Hs(p)e. と表すことができることを以下の手順 (1)-(3) で示せ。 = I (2) (1) 軸上の点Pに作られる磁場を求める。 点Pの座標を(x, 0, 0) とする。 軸上の点S のまわりのds部分を流れる電流が点Pに作る磁場の向きをその理由とともに答えよ。 V x H = i (2) 次に、点Pがzy平面上、軸からの距離がpの位置にあるとする。 このとき、円筒 座標を用いて点Pの座標が (p,p,0) であるとする。 軸上の点Sのまわりのds 部分 を流れる電流が点Pに作る磁場の向きをその理由とともに答えよ。 また、磁場の大き さがpのみに依存し、中に依存しないことを示せ。 2 (3) 最後に、 点Pが円筒座標 (p, 中, z), ≠0の位置にあるとする。 軸上の点Sのまわり のds 部分を流れる電流が点Pに作る磁場の向きをその理由とともに答えよ。 また、 磁場の大きさがpのみに依存し、 中,zに依存しないことを示せ。 (4) 磁場をH, 電流密度をżとしたとき, マックスウェルの方程式の一つは, (3) で与えられる。 マックスウェルの方程式 (3) を用い, さらにストークスの定理を適用 して、円筒座標 (p, 中, z), (p > 0) の点Pにおける磁場のe, 成分, H を求めよ。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

Ⅲ-1(1)~(4) Ⅲ-2(1)~(3) を教えてください

III. 強さの定常電流が作る磁場は、次のビオサバールの法則で与えられる。 点Sのまわりのds 部分を流れる電流が点Pに作る磁場dH は、 I ds x r' 4 3 (1) で与えられる。ここで、 r'はSからPに向かうベクトルSP、 r' = r 。 下の左図参照。 dH = I S ds III-1. 強さの無限直線定常電流が軸上を、軸の正の向きに流れている場合を考える。 上の左図。 円筒座標系において、点Pの円筒座標を(p, 中, z) とし、 その点での規格化された 基底ベクトルを eps epiez とする。 円筒座標 (p,d,z) の点Pに作られる磁場H (p, 中, z) は、ed の向きであり、磁場のe。 成分, Ho は pのみに依存する、 すなわち H(p,d,z) = Hs (p)eΦ と表すことができることを以下の手順 (1)-(3) で示せ。 (2) (1) 軸上の点Pに作られる磁場を求める。 点Pの座標を(x,0,0) とする。 軸上の点S のまわりのds部分を流れる電流が点Pに作る磁場の向きをその理由とともに答えよ。 (2) 次に、点Pがzy平面上、軸からの距離がpの位置にあるとする。 このとき、円筒 座標を用いて点Pの座標が (p,p,0) であるとする。 軸上の点Sのまわりのds 部分 を流れる電流が点Pに作る磁場の向きをその理由とともに答えよ。 また、磁場の大き さがpのみに依存し、中に依存しないことを示せ。 (3) 最後に、 点Pが円筒座標 (p,d,z), ≠0の位置にあるとする。軸上の点Sのまわり のds 部分を流れる電流が点Pに作る磁場の向きをその理由とともに答えよ。 また、 磁場の大きさがpのみに依存し、 中zに依存しないことを示せ。 (4) 磁場をH, 電流密度をżとしたとき, マックスウェルの方程式の一つは, V x H = i (3) で与えられる。 マックスウェルの方程式 (3) を用い, さらにストークスの定理を適用 して、円筒座標 (p, 中, z), (p > 0) の点Pにおける磁場のe 成分, H を求めよ。 III-2. 次に、 上の右図のように、 無限に長い円筒に強さの定常電流が流れている場合を考 える。ここで、円筒の断面は半径aの円であるとする。 円筒の中心軸を軸とする。 円筒に は強さの定常電流が軸の正の向きに, 円筒内を一様に流れているとする. (1) III-1 の結果を利用して、 円筒座標 (p, Φ, z) の点Pに作られる磁場 H (p, 中, z) は、 ed の向きを向くことを示せ。 また、 磁場のed 成分, H は p のみに依存することを示せ。 即 ち、この場合も磁場は式 (2) のように表すことができる。 (2) 円筒領域p<α及び円筒外の領域p>αにおいて、電流密度の大きさ i = i を求め (3) マックスウェルの方程式 (3) を用い, さらにストークスの定理を適用して,次の領域 における磁場のe」 成分, H を求めよ。 (a) p<a, (b) p> a

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

問2の(3)(4)を教えてください

問2. ばね定数 k [N /m] (k > 0) の軽いばねがある。なめらかな水平面上でこ 自然長 のばねの左端を固定し、右端に質量 m kg] の物体を取り付けた。次に、 手で mm 物体を引っ張ってばねを自然長より cm 伸ばしてから静かに手を放した。図 0 に定義された座標軸に基づいて、その後の物体の運動について、以下の間に答 えよ。ただし,時刻 ts]での物体の位置を (t) [m] とし、ばねが自然長のときの物体の位置を原点とする。 (1) Find the restoring force F, [N] that the spring tries to return when the object is displaced by z m from its natural length. (2 points) d'z as its acceleration. dt? (2 points) (2) Find the equation of motion of the object, using the notation of (3) Find the general solution of the equation of motion of the object. (3 points) (4) Find the solution that meets the initial conditions described in the problem. Here, the moment when the hand is released is set as time t==0s. (3 points) 問3.問2では摩擦などの抵抗力がない理想的な単振動を扱ったが、実際には抵抗力が存在する。 抵抗力は速度 dt に比例することが多く、この比例定数をc[N.s/m] (c> 0) とおくと、 運動方程式は教科書 P.66 の(2.40)式として表 される。この方程式の一般解は、 教科書 P.52に示す「定数係数の2階線形同次微分方程式の一般解」として表され、 教科書 P.66 の下段3行に示すような解 a) c)となる。これらの解の導出課程を、 以下の手順に従って示せ。 d。 da. (1)(2.40)式 m = ーkc - c dt? の右辺において、c dt の項の符号がマイナスである理由を考察せよ。 dt (2点)

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

問2の(3)(4)を教えてください

問2. ばね定数 k [N /m] (k > 0) の軽いばねがある。なめらかな水平面上でこ 自然長 のばねの左端を固定し、右端に質量 m kg] の物体を取り付けた。次に、 手で mm 物体を引っ張ってばねを自然長より cm 伸ばしてから静かに手を放した。図 0 に定義された座標軸に基づいて、その後の物体の運動について、以下の間に答 えよ。ただし,時刻 ts]での物体の位置を (t) [m] とし、ばねが自然長のときの物体の位置を原点とする。 (1) Find the restoring force F, [N] that the spring tries to return when the object is displaced by z m from its natural length. (2 points) d'z as its acceleration. dt? (2 points) (2) Find the equation of motion of the object, using the notation of (3) Find the general solution of the equation of motion of the object. (3 points) (4) Find the solution that meets the initial conditions described in the problem. Here, the moment when the hand is released is set as time t==0s. (3 points) 問3.問2では摩擦などの抵抗力がない理想的な単振動を扱ったが、実際には抵抗力が存在する。 抵抗力は速度 dt に比例することが多く、この比例定数をc[N.s/m] (c> 0) とおくと、 運動方程式は教科書 P.66 の(2.40)式として表 される。この方程式の一般解は、 教科書 P.52に示す「定数係数の2階線形同次微分方程式の一般解」として表され、 教科書 P.66 の下段3行に示すような解 a) c)となる。これらの解の導出課程を、 以下の手順に従って示せ。 d。 da. (1)(2.40)式 m = ーkc - c dt? の右辺において、c dt の項の符号がマイナスである理由を考察せよ。 dt (2点)

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

マーカーのa(k)はa_H(k)をあらためてa(k)と置いてるということですか?

Xしていく: p) == a'(p)|0), |p,p2) = a'(pi)a'(pa)|0), このようた 態全体は,個数演算子·運動量演算子(I.8節)の固有ベクトル系と」 場の演算子の時間発展を生成消滅演算子によって表現するために,ハイゼン 完全系を構成する.より詳しく言えば,{|0), Ip.…pn) }(n=1,2,.. は,基底として一つのヒルベルト空間(Hilbert space)を張ることにから 量子力学·場の量子論で重要な役割を果たすこの空間と基底は,それぞ。 フォック空間(Fock space),フォック基底(Fock basis)と呼ばれている 必要な手続きは以上だが,上記 (3) には重要な事実が含まれている.すなに ち、{|0), Ip…p,)} が完全系ということは, 任意の物理的状態 ) が n -/IFk, |k,… k,) (ks… k,) (II.31) n=1 =1 と展開できるということである.この展開式は, 「多体系の量子力学と場の量子 論の同等性」も示している.つまり, 右辺の展開係数 (p,.…P,)は, n粒子 系の(運動量表示) 波動関数に他ならず, 従って, )による状態の「場の量子 論的な記述」は,1粒子波動関数, 2粒子波動関数, の総体による「量子力 学的な記述」と同等という訳である。 I.6 場の演算子の時間発展 る ベルク描像に移行しよう. このときゅは 中日(x, t) = e(-o) do(2)e-iH(t-to)

解決済み 回答数: 1
1/4