学年

教科

質問の種類

物理 大学生・専門学校生・社会人

物理のエッセンスp.44-45のEX3で、床に摩擦がある時と無いときでBが床から受ける動摩擦力が変化するのがよく分かりません。 詳しく教えていただきたいです。

IV 運動の法則 45 F 図AはBから動摩擦力 μmg を左向きに受 m ○m けるので 糸 A man=ー Lmg . aA=ーPg 仮りの姿 動摩擦力 M 一方,Bはその反作用を右向きに受けるので 4mg ) M mO B Map=4mg * ap=Lmg M ●M 動摩擦力の反作用 e Bの式を(m+M)ag= で始める人が非常に多い。Aが乗っていて重いと いう意識からなのだろうが, 運動方程式の質量の項は “注目物体の質量 だった! Bに注目しているからそれは Mなんだ。 Bに対するAの相対加速度αは α=an-ap=-m+M B上で止まるのは相対速度が0になるときだから のm F M M M F m 箱 Mg 44 上の図(b)および(d)で, m と面との間に摩擦があり,動摩擦係数をμとした ときの加速度aを求めよ。 Mu。 0= o+at より t= (m+M)μg Mv。 2(m+M)ug G相対加速度 を活用したい また, 0°-v%=2αl より 1=- 45* 質量 mのAとつり合わせるためにはBの質量 M。はいくらにすればよいか。 次に, Bの質量を M としたところ, Bが下がった。Aの加速度aおよび 糸Bの張力Sを求めよ。 2つの滑車は軽いものとす 定滑車 糸B ここで, oは相対初速度(3Dvo-0) として用いている。なお, AがB上で止 まった後は動摩擦力はなくなり, 2つは一体となって, ひo+aat=0+apt=_" の速さで床上をすべる。 -Vo 糸。 m+M 動滑車 る。 -糸Y ■B Miss 1= vot +ante としてはダメ。 Q^はB上での動きでなく床に対する動き を表しているからだ。運動方程式の加速度は地面に対するものだった! m 製トク Aの動きと比べると動滑車の動きは半分。 Sよっと一言 床に摩擦(動摩擦係数μ)があると, Bが床から受ける動摩擦力は いくらになるか分かるかな? μMg ? それともμ(M+m)g? この場合はμ(M+m)gが正しい。頭がこんがらがりそうだね。 動 摩擦力 μN は床からの垂直抗力Nで決まり, 上下方向では力のつり 合いが成りたち, N=(M+m)gとなるからなんだ。 床は2物体分 の重さを支えなければならない。一考えてみれば当然のことだね。 つまり, Aに比べてBは動く距離, 速さ, 加速度すべてが半分になる。 46* 質量 MのAに質量 m, 長さ1のロープを取り付 け,なめらかな床上をFの力で引っぱる。付け根か らx離れた位置でのロープの張力 Tを求めよ。 M X、 m F A utugS さあ,運動方程式も最終段階だ。次のケースで実力を試してみよう。 Q&A EX3 滑らかな床上に置かれた質量 Mの板B がある。質量 m の小物体 Aが速さ で飛 び乗り,Bの上を滑った。 それぞれの物体 Q この場合 Aは動摩擦力を左向きに受けるのは直感的に分かります。でも, 一般に,動いている板から受ける動摩擦の向きはどのように決めるのですか。 A 速度の向きと逆というのは固定面のときのこと。板が動いているときは, 板 に対する動き(相対速度)と逆向きと判断する。 もし, 相対速度が0なら静止摩 擦の話になる。動摩擦か静止摩擦かは, 地面に対する動きでなく, 接触面が滑 り合うかどうかで分かれるんだ。 m A の加速度を求めよ。また, AがBに対して 止まるまでの時間さとB上で滑る距離!を 求めよ。A, B間の動摩擦係数をμとする。 B M

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

よろしくお願いします

仕事とエネルギー、運動量を用いた物体の運動の解法 【間2] ばねでつながれた二物体の運動の運動量の保存と力学的エネルギーの保存則を用いた運動の解法 (参照:演習問題8の問2) 図のようにまさつのない水平な床の上に自然長が,、ばね定数がkxのばねが置かれている。 その両端に質量 とm。の物体1と2を取り付けた。 物体1に右向きに初速。を与えたところ. の物体は床の上をx軸の正の 方向に運動した。 座標系として、水平方向右向きにx軸、鉛直上向きにy軸をとり、原点を = 0における物体1 の位置にとる。 以下の問いに答えなさい。 (物体1、2の位置、速度、加速度のx成分をそれぞれ、x,(り、xs(り、 Yax(り、pzx(ひ)、qix(り、qzx(ひなど1や2の添え字を使用して表しなさい。 ) (1) この運動において、物体1と物体2の運動量の和は不変である。 その理由を運動量の変化と力積の関係を用いて述べなさい。 (2) この運動において、物体1と物体2の運動エネルギーとばねの弾性エネルギーの和は不変である。 以下の記述がその証明となる。 正しい記述となるように次のカッコ( 1 )から( VI )に入れるべき数や式 を答えなさい。 時刻での物体1と2のx座標x。(。)、x。(ひを用いて、時刻でのはねののびを表すと( 1 )となる。よって、物 体1と2の運動方程式の成分はそれぞれ、m。学e中ニ( Tエ )…①、m se思ニ( 反 )…②となる。 e 次に、①式の両辺と。(O) = 字の各辺との積をとると、次のような等式が得られる。 る map(O演ー( m ) x 左辺はps(O CO (tio人(の )…・@と式変形できる。よっ て(aeO) =(T ) x 名.…④ 同様にして、全(apa⑨)=( mm ) x折品…の ③式と④式の各辺の和をとると、 (tp) ao3() ) =( W )…・⑤ ここで時刻Lでのばねのの びを表す関数をXY(ひとおくと、( IV ) はxi(り、xz(ひの代わりにX(りを用いて、( IV )=( V 和書 くことができる。さらに、のひ式と同様な式変形より、( V )x富= ーikX(O )…⑥となる。 @式と@式より、(imaik(O+3moik(0+3kX2(O ) =( Y )…⑦ 物体1と2は床の上を運動するこ とから、ヵ>(0) = poy() = 0 よって、⑦式のカッコの中は物体1と物体2の運動エネルギーとばねの弾性エネ ルギーの和となっており、それの時刻での微分が( VI )となることから、物体1と物体2の運動エネルギーと ばねの弾性エネルギーの和は不変であるといえる。 (3) ばねの長さがもっとも長くなったとき、物体1と物体2の速度はどのような関係になっているか答えなさい。 (4) ばねの長さの最大値/。。。を求めなさい。 (⑮) 演習問題8の問2の解からも/mxを求め、(4)で求めた値と一致することを確認しなさい。

回答募集中 回答数: 0