学年

教科

質問の種類

物理 大学生・専門学校生・社会人

問2の(3)(4)を教えてください

問2. ばね定数 k [N /m] (k > 0) の軽いばねがある。なめらかな水平面上でこ 自然長 のばねの左端を固定し、右端に質量 m kg] の物体を取り付けた。次に、 手で mm 物体を引っ張ってばねを自然長より cm 伸ばしてから静かに手を放した。図 0 に定義された座標軸に基づいて、その後の物体の運動について、以下の間に答 えよ。ただし,時刻 ts]での物体の位置を (t) [m] とし、ばねが自然長のときの物体の位置を原点とする。 (1) Find the restoring force F, [N] that the spring tries to return when the object is displaced by z m from its natural length. (2 points) d'z as its acceleration. dt? (2 points) (2) Find the equation of motion of the object, using the notation of (3) Find the general solution of the equation of motion of the object. (3 points) (4) Find the solution that meets the initial conditions described in the problem. Here, the moment when the hand is released is set as time t==0s. (3 points) 問3.問2では摩擦などの抵抗力がない理想的な単振動を扱ったが、実際には抵抗力が存在する。 抵抗力は速度 dt に比例することが多く、この比例定数をc[N.s/m] (c> 0) とおくと、 運動方程式は教科書 P.66 の(2.40)式として表 される。この方程式の一般解は、 教科書 P.52に示す「定数係数の2階線形同次微分方程式の一般解」として表され、 教科書 P.66 の下段3行に示すような解 a) c)となる。これらの解の導出課程を、 以下の手順に従って示せ。 d。 da. (1)(2.40)式 m = ーkc - c dt? の右辺において、c dt の項の符号がマイナスである理由を考察せよ。 dt (2点)

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

問2の(3)(4)を教えてください

問2. ばね定数 k [N /m] (k > 0) の軽いばねがある。なめらかな水平面上でこ 自然長 のばねの左端を固定し、右端に質量 m kg] の物体を取り付けた。次に、 手で mm 物体を引っ張ってばねを自然長より cm 伸ばしてから静かに手を放した。図 0 に定義された座標軸に基づいて、その後の物体の運動について、以下の間に答 えよ。ただし,時刻 ts]での物体の位置を (t) [m] とし、ばねが自然長のときの物体の位置を原点とする。 (1) Find the restoring force F, [N] that the spring tries to return when the object is displaced by z m from its natural length. (2 points) d'z as its acceleration. dt? (2 points) (2) Find the equation of motion of the object, using the notation of (3) Find the general solution of the equation of motion of the object. (3 points) (4) Find the solution that meets the initial conditions described in the problem. Here, the moment when the hand is released is set as time t==0s. (3 points) 問3.問2では摩擦などの抵抗力がない理想的な単振動を扱ったが、実際には抵抗力が存在する。 抵抗力は速度 dt に比例することが多く、この比例定数をc[N.s/m] (c> 0) とおくと、 運動方程式は教科書 P.66 の(2.40)式として表 される。この方程式の一般解は、 教科書 P.52に示す「定数係数の2階線形同次微分方程式の一般解」として表され、 教科書 P.66 の下段3行に示すような解 a) c)となる。これらの解の導出課程を、 以下の手順に従って示せ。 d。 da. (1)(2.40)式 m = ーkc - c dt? の右辺において、c dt の項の符号がマイナスである理由を考察せよ。 dt (2点)

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

マーカーと矢印のところがわかりません、教えてください http://www.yam-web.net/science-note/AM.pdf

導出2 http://hep1.c.u-tokyo.ac.jp/-kazama/QFT/qh4slide.pdf 「量子力学/場の量子論 /Noether の定理」参照 SL Lagrange 微分: を次のように定義する。 SL Te (6,4) OL 8p SL OL 三 p OL 場の運動方程式: =0 次の無限小変換を考える。 x→x'=x+4x (x→x=x"+ Ax") p(x) → p(x) = ¢(x) + 4¢(x) 4は total change(¢(x) からの差分)を表す。 また、中(x)は、(x)= ¢(x) + Ax" 6,¢(x) でもある。 中(x) は場を少しだけ変形したもの、次の項は位置を少しだけずらしたときの差分。つまり、場の形の微小変 化による差分+位置の微小ずらしによる差分= total change となる。 Lie 変分:同一座標点での場の形の変化を Lie 変分と呼びるで表す。 るp(x) = ¢(x) - (x) 上の中(x)に関する2つの式より、 Sp(x) = ¢(x) - (x) = 4¢(x) - Ax" o,¢(x) すなわち total change 4¢(x) は、A¢(x) = ō¢(x) + Ax" o,¢(x) となる。 (x地点では、ふ(x)= ¢(x') - ¢(x') ) 作用S=Jd'xL(¢x), a,4(x))の変化を求める。 S'=[dx L(¢), 6.f(ax)) まず場の変化をx'での Lie 変分で書き表す。すなわちゅ(x) = ¢(x) + 5p(x) 等々。 すると、微小量の一次のオーダーまでとって S'=[dxL(ec). 6,4)+Jd'x( + L -6,54) 第1項をxでの表式に書き換えると、 Ja'r La) =[dxL) d'x=dx =Jdx(L) + Ax" 6,1 ) ヤコビアンは次のように計算される。行列 MをM,= 0, Ax° と定義すると、 TOPページ(総合目次)へ 全文検索は Ctrl+F 11 = detl1 +MI = expTrln(1 + M) ~expTrM~ 1+ 6Ax" OL S'=Jd'x(1+ 0Ax°)(L+ Ax" 0,L + 6,6) ("e)e - 5p T9 この一次近似は、 SL L L -Sp+ 6(- SL 三 6¢ OL =[dx{L+6.(ax" L) + - るみ)} a(6,4) 0.4) =Jdx{L+ + T2 p+ Ax" L)} (0,p) 8p S-S=[dx +s T9 るp+ Ax" L)} - Ja'xL=S 8p (e)e、 =Jdx{e"+ SL ここでは、デ= OL - み+ Ax" L 6,4) SL ゅ= 0 8p 8L L T9 場の運動方程式 8p =0より、 " a(6,4) L L るp+ Ax" Lとしたが、j"= - a(0,4) - 5ゅ - Ax" Lとおいてもよい。) 6j"= 0 (j"=

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

物理問題

【問 2】 図の様に, 質量 7, の物体を円弧形状の斜面上 端からそっと滑らせ, 斜面の下端において右向き速 度ぃとなった後, その先にある, 質量 7 の台車の 上に乗る. 物体と台車上面の間には摩擦が存在し, 物体は台 上をしばらく滑ってから台車上で静止し, 台車と 一体となって運動した. 車は, 右端にあるバネ定数な のパネに当 | その後台 たり, そのバネを 7だけ縮めたのち, 跳ね返された. 斜面の高低差は ヵ, 斜面の下端と台車までの水平な区間では, 物体には摩擦などの外力は働かなかいものとする. また, 台車と 床面との間にも摩擦は働かず, バネの質量は無視する. 重力加速度を 7 とし. 以下の各問に答えよ. (1) 物体が台 (2) 物体が台 (3) 一方, E上で滑っている間には, 物体と台車の間で力が働くにも関わらず, 全運動量は保存される. その理由を述べよ. も上静止し, 一体化した後の速さ V を, ゎヵ, 7, 7 で表せ. 物体が台 に乗る前と乗った後では, 一般的には力学的エネルギーが保存されない. その理由を述べ, 一体化まで に失われた力学的エネルギーを ゎ, 礼、 47 で表せ. また, 失われたエネルギーはどこへいったのか, 考えうる可能性をあ げよ. (4) 斜面と】 物体との間に摩擦が存在しないとするとき, をヵ. 7. 反。 9 を用いて表せ.

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

解答は順番に4,4,0,3,1,5,7,3,3,6,9,3,3,6,3,2です。 後半の10番からがなぜ解答のようになるのか分かりません…解説お願いします。

以の てはまる, 適当な数値をマークせよ。 了仙に沿って運動する物体A について考える。 時刻 (| における物体 の吉較度りhm/半が。a(0 = ー16z(0 のように生えられているとする。ここで, (0[m は時誠における物体の位置を表している。まず はこの物体 A の運動を考えてみよう。衝分方程式 gz0 1ezの (| に(0 = nest を代入して衣仙する。ここで. 定数。 は正であるとする。ここから。 =[上であれは (0 = inouf は式 (の削の1つであることがわかる。同便に。 gr > 0 であるとして。z(け = cwort を 式 () に代入してみると。 cs = [5]の場合に (0) = cowcrf は式 (大) の解となることがわかる。 さらに 上で出てきた2 つの角を定数公して足したものも。式 () の解になることがわかる。そこで こ の人分往基の一般通として。 (9 =でumaet+ Cacoserf 、 が香らねる, ここに。 で.で。 は任意の定数であり, これらの値は初期条作によって決定きれる。 1 =0さの時 に。 物体Aがテニ3m の位置にいて硬止していたとすると。 Ci となる。この結果か らち。 物体Aは内期が約[6上7] ゆで -[引m <テ< 中 の箇を振動することがわかる。 に。因民がa(0 =ー0e(0 51 で生えられるような物体の連動を考えてみよう- の = - |とすると 0 。_[同r() となるので. 物件Bの時刻(における位攻z(ひ の dd MM sm +cros となることが分かる。ここで, 物体 は1ニ 0のときにァニ6mの位置にいて台度を 0 = 9 m/s で運動して いたとすると。 物価んと物Bが6 =に人9は(=らら> <

回答募集中 回答数: 0
1/3