学年

教科

質問の種類

物理 大学生・専門学校生・社会人

電磁気の問題です。大至急解き方を教えていただけないでしょうか……。全く解き方がわかりません。どなたかどうかお願いします

問題5 (この問題では適宜対称性を援用せよ.なお, 1) 2) では Ia はIのままで計算すれば よい. 3) では Ia の表式の計算が必要となる) 極板が半径rの金属円板, 極板間距離がl の (十分理想的な) 平行板コンデンサがあるとする. いまこのコンデンサは充電中であるとする. 充電中には極板間の電場は時間変化するが, 空間的には一様 (極板間のどこでも同じ) であると仮定する.また, 2枚の極板が底面(上面・ 下面), 高さlの円柱を考えておこう. の → 1) 極板間では電流密度はすであるが,変位電流密度 J = o はすではない。極板間 で極板と同じ半径rの円板面をDとするとき をDにおいて面積分したものを,変位電 at 流La=pn as とする。 上記の仮定より Laは極板間で一様となる。変位電流 I』が上記 Jar Hola の円柱の側面に作る磁場の大きさBがB= となることを示せ. 2πr 2) 極板間の電位差を Vとする. 上記の円柱の側面におけるポインティングベクトルの大きさ Sを計算し, Sを側面にわたって積分したものを W とすると W = VI』 となることを示せ . πr² 3) 定数Cを C= com とおく。 時刻がt=0〜tのときに、電位差がV= 0〜V と変化した l とする.このとき, 2) の Wを積分すると - wa = 1/2 CV2 となることを示せ。 W dt

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

機械工学科に通ってます。 流体力学についての質問です。 応用流体力学の問題なのですが、全くなに言ってるかわからないので、どなたか知っている方がいればお知恵をお借りしたいです。 全然わからないので、お助けいただけると本当に嬉しいです。よろしくお願い致します!! ・1 ... 続きを読む

に示す4種類の容器において、 底面の栓に働く全圧力が大きい順に並べ (等号、不等号を用いて), その 理由を述べよ。 また、 各栓の面積は同一断面積 A を有するものとする. (⑥6)> (④)=(d)→(c) → (c)> (a) = (d)>cb) Ⅱ. ヘアドライヤー(図2)とホースを複数使って、 一人の人間(体重 60kg)を浮かせたい。 ヘアドライヤーは少なく とも何個必要になるか推定せよ. 1,260 =77213 lito. 通常のドライヤーの風量は 1.2m²/m 22-4 V₂ 293 373 シャルルの目より Vo - 空間分子程は8×2/+32×1/18= 空気の粘性係数を/4 Z = 温度は 14 ( 30313233-22-4 28.5L-28.8g D= cd A pu² / 2g 1.01 2442 - #9 Ⅲ. エアホッケー(図3)のパックにかかる摩擦力を推定せよ. u (x-J) ett ax word. = const zaz", + y ) N =28.5L 28.8gなので 373Kと仮定する Polaz" NIPT (a) (b) (c) (d) 図1 パスカルのパラドックス Dzmg cd A pu²/29 z mg 図2 ヘアドライヤー u² z とおくと 597 2 mg² 人間の断面を1.7×0.6×0.2 = 0,20m GAPとなる 2mg2 2×60×98 u²3 CdA² =0,4x0,2x10- =1.43x10² u≧11.94.0.02597 よってドライヤーは11.94 ミキマミチ 躰ほど必要である。 図3 エアホッケー 余白が足りない場合は、 裏面に解答可能.

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

機械工学科に通ってます。 流体力学の問題についての質問です‼︎ 応用流体力学の問題が全くわからないので、どなたか知っている方がいればお知恵をお借りしたいです。。 すごく、難しいと感じていて困っているので、どうか助けていただければ嬉しいです。 ・(1) パスカルのパラ... 続きを読む

に示す4種類の容器において、 底面の栓に働く全圧力が大きい順に並べ (等号、不等号を用いて), その 理由を述べよ。 また、 各栓の面積は同一断面積 A を有するものとする. (⑥6)> (④)=(d)→(c) → (c)> (a) = (d)>cb) Ⅱ. ヘアドライヤー(図2)とホースを複数使って、 一人の人間(体重 60kg)を浮かせたい。 ヘアドライヤーは少なく とも何個必要になるか推定せよ. 1,260 =77213 lito. 通常のドライヤーの風量は 1.2m²/m 22-4 V₂ 293 373 シャルルの目より Vo - 空間分子程は8×2/+32×1/18= 空気の粘性係数を/4 Z = 温度は 14 ( 30313233-22-4 28.5L-28.8g D= cd A pu² / 2g 1.01 2442 - #9 Ⅲ. エアホッケー(図3)のパックにかかる摩擦力を推定せよ. u (x-J) ett ax word. = const zaz", + y ) N =28.5L 28.8gなので 373Kと仮定する Polaz" NIPT (a) (b) (c) (d) 図1 パスカルのパラドックス Dzmg cd A pu²/29 z mg 図2 ヘアドライヤー u² z とおくと 597 2 mg² 人間の断面を1.7×0.6×0.2 = 0,20m GAPとなる 2mg2 2×60×98 u²3 CdA² =0,4x0,2x10- =1.43x10² u≧11.94.0.02597 よってドライヤーは11.94 ミキマミチ 躰ほど必要である。 図3 エアホッケー 余白が足りない場合は、 裏面に解答可能.

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

解説お願いします。

以下の問題文を統んで, 3 12]の中に適切な式または数値を書きなさい。 「1) 図3-1のように,内部抵抗が無視でき る起電力 E, [V) および Ex [V] をもつ直流電源、 抵抗値52, 2 2, 10 S2 および2.5 2 の抵抗からな る直流回路がある。各抵抗値ならびに起電力 E は常に一定であり,起電力 Eaは可変である。各 起電力は常に正の値をとり, 電流ム (A] ならび に電流 12[A) の符号は,図に示す向きを正とす る。電圧計Vに流れる電流は無視できるものとす る。また,電圧計にかかる電圧をV[V] とする。 (1)最初,スイッチSは閉じており,電流ムならびに電流 I。は, 共に 20A であった。このときの起電力 Eは1]V, 起電力 Eaは2 ]V, 電圧 Vは [3]Vである。 (2) 次に,(1)の状態からスイッチSを開いた。 このときの電流I,は[ Vは[6]Vとなる。 (3) (2)の状態から起電力 E. を調節して, 電圧 Vを(1)の状態と等しい値の3]Vとなるようにした。 このときの起電カ Eaは7]Vであり, 電流ムは8]A, 電流 Jaは9]Aとなる。 [I] 電気容量Ci [F] のコ ンデンサーAと, 電気容量 Ca(F)のコンデンサーB がある。コンデンサー A, Bと直流電源を接続した図 3-2および図3-3の回路 について考える。なお, こ れらの回路は電源と接続してからじゅうぶんな時間が経っているものとする。 (1) 図3-2の回路において, mとnの間の電気容量は, C. および C。を用いて表すと 10 (2) 図3-3の回路において, mとnの間の電気容量は, C. および Caを用いて表すと1]F] である。 (3) 図3-2の直流電源の電圧を4V, 図3-3の直流電源の電圧を 10Vとした。このとき, 図3-2およ び図3-3の回路が持つ静電エネルギーU [J]は共に等しい値であった。これより, コンデンサーAと Bの電気容量の比 (C.: C) を求めると [12] となる。ただし, Ci は Caよりも大きい (C>C) とす る。 S [ 59 |22 |100 |2.59 オ E Ez 図3-1 OA, 電流I。は5]A, 電圧 m- m ココンデンサー A コンデンサーA コンデンサーB G 4V 10V |C |C コンデンサーB Ja n n 図3-2 図3-3 [F]である。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

問2の(3)(4)を教えてください

問2. ばね定数 k [N /m] (k > 0) の軽いばねがある。なめらかな水平面上でこ 自然長 のばねの左端を固定し、右端に質量 m kg] の物体を取り付けた。次に、 手で mm 物体を引っ張ってばねを自然長より cm 伸ばしてから静かに手を放した。図 0 に定義された座標軸に基づいて、その後の物体の運動について、以下の間に答 えよ。ただし,時刻 ts]での物体の位置を (t) [m] とし、ばねが自然長のときの物体の位置を原点とする。 (1) Find the restoring force F, [N] that the spring tries to return when the object is displaced by z m from its natural length. (2 points) d'z as its acceleration. dt? (2 points) (2) Find the equation of motion of the object, using the notation of (3) Find the general solution of the equation of motion of the object. (3 points) (4) Find the solution that meets the initial conditions described in the problem. Here, the moment when the hand is released is set as time t==0s. (3 points) 問3.問2では摩擦などの抵抗力がない理想的な単振動を扱ったが、実際には抵抗力が存在する。 抵抗力は速度 dt に比例することが多く、この比例定数をc[N.s/m] (c> 0) とおくと、 運動方程式は教科書 P.66 の(2.40)式として表 される。この方程式の一般解は、 教科書 P.52に示す「定数係数の2階線形同次微分方程式の一般解」として表され、 教科書 P.66 の下段3行に示すような解 a) c)となる。これらの解の導出課程を、 以下の手順に従って示せ。 d。 da. (1)(2.40)式 m = ーkc - c dt? の右辺において、c dt の項の符号がマイナスである理由を考察せよ。 dt (2点)

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

問2の(3)(4)を教えてください

問2. ばね定数 k [N /m] (k > 0) の軽いばねがある。なめらかな水平面上でこ 自然長 のばねの左端を固定し、右端に質量 m kg] の物体を取り付けた。次に、 手で mm 物体を引っ張ってばねを自然長より cm 伸ばしてから静かに手を放した。図 0 に定義された座標軸に基づいて、その後の物体の運動について、以下の間に答 えよ。ただし,時刻 ts]での物体の位置を (t) [m] とし、ばねが自然長のときの物体の位置を原点とする。 (1) Find the restoring force F, [N] that the spring tries to return when the object is displaced by z m from its natural length. (2 points) d'z as its acceleration. dt? (2 points) (2) Find the equation of motion of the object, using the notation of (3) Find the general solution of the equation of motion of the object. (3 points) (4) Find the solution that meets the initial conditions described in the problem. Here, the moment when the hand is released is set as time t==0s. (3 points) 問3.問2では摩擦などの抵抗力がない理想的な単振動を扱ったが、実際には抵抗力が存在する。 抵抗力は速度 dt に比例することが多く、この比例定数をc[N.s/m] (c> 0) とおくと、 運動方程式は教科書 P.66 の(2.40)式として表 される。この方程式の一般解は、 教科書 P.52に示す「定数係数の2階線形同次微分方程式の一般解」として表され、 教科書 P.66 の下段3行に示すような解 a) c)となる。これらの解の導出課程を、 以下の手順に従って示せ。 d。 da. (1)(2.40)式 m = ーkc - c dt? の右辺において、c dt の項の符号がマイナスである理由を考察せよ。 dt (2点)

回答募集中 回答数: 0
1/2