学年

教科

質問の種類

物理 大学生・専門学校生・社会人

(4)以降全く進めません 答えもなくて困っています どなたか解説をお願いできませんか

Oshi oshil oshi 20:28 日 oshi 前のページ shin toshin toshin ■ 4G95 toshin 次のページwhin [hin 2 図に示すように、水平面に対して傾き 30℃のなめらかな斜面とその下端から連 続する水平な床がある。 斜面上の高さんのところから質量mの物体Aを静かに 放したところ、 物体Aは斜面をすべり落ち、斜面下端Pから右側にだけ離れ た水平面上の点に置かれていたMの物体Bと最初の衝突を起こした。 こ のときのはね返り係数をe (0<e< 1), 重力加速度をg, 物体A, Bと斜面お よび床面との摩擦は無視できるものとして、 以下の問い(問1~5)に答えなさ い。ただし、 右方向を正の向きとし. <1とする。 min oshi hin 問1 物体Bと最初に衝突する直前の物体A の速度はいくらか。 g, hを用 いて答えなさい。 oshi Shin Oshi 問2 最初の衝突直後の物体A, B の速度 UAY UB はそれぞれいくらか。 g. e,m, M, hを用いて答えなさい。 hin 物体Bの質量は物体Aの質量の4倍 (M=4m) であり,e=0.5のとき, 最初 Oshiの衝突後、物体Aは左向きに進み、斜面を高さHまでのぼり,そこで向きを変え て再び斜面をすべり落ちた。 一方、物体Bは右向きに進み、 しだけ離れた位置 Q oshiにある鉛直な壁と完全弾性衝突して向きを変えた。 その後、物体Aと物体Bは再 び衝突した。 hin oshi oshi 問3 最初の衝突直後。 物体が斜面上で達する最高点の高さはいくらか。 h を用いて答えなさい。 また、 物体Aが最初の衝突から斜面上で最高点に 達するまでの時間 T, はいくらか。 g, h, lを用いて答えなさい。 min nin oshi oshi 問43で物体Aが斜面上で最高点に達してから物体Bと2回目の衝突を起 こすまでの時間 T はいくらか。 . . 1を用いて答えなさい。 結果だけで なく、 導出の過程を整理し、解答欄に記載しなさい。 min hin oshi 問5 この2回目の衝突は0点の左右どちら側で起こるか。 また。 0点との距 離Lはいくらか。 h, lを用いて答えなさい。 nin oshi min 壁 A oshi shi h Oshi < ああ 30° P MBO toshin-kakomon.com ■ nin hin hin

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

マンサスの法則の問題です。 解いてみましたが、1問目からつまずいています。 1問目から最後まで教えていただきたいです。

1. ソ連 (現: ロシア)の人口は1959年には2億900万人だったか、 割合で指数関数的に増加していくものとして概算された。 その概算式は、 dP =kP dt と表される(k=0.01)。 このとき、 1959年以降の予測人口を求めよ。 1970年の予 測値はいくらか? また人口が1959年の1.5倍になるのはいつか? pt P(t) = Poche: 2.09×108 (10.01) e 0.01+ 1959年 11午後 1970年 10.017" P(1)=2.09×108 (1+0:01)11 0.01×11=0.1 2.3317×108 229 よって 11年後の1970年は約2億3317万人 人口が1959年の1.5倍になるのは 2.09×108× ×1.5=3,135×108人 2.09×108c(1.01)と =3.135×108 1.01t=1,50 2. ニュージーランドの人口は以下の表のように与えられている。 年 人口 1980 3.13 × 106 1985 3.26 × 106 人口増加率 (1) 微分方程式が1. と同じ形式となるとき、 上の表をもちいて係数の値を計算せよ。 3.26 - 3.13 0.13 0.026 1985-1980 5 0.026×100=2,60(%) よって K= 2.60 (2)また、1935年, 1945年, 1953年, 1977年の人口を予測し、以下に与えている実際の データと比較せよ。 さらに、モデルの妥当性について考察せよ。 人口 (モデル) 年 人口 (実際) 1935 1.491 × 106 1945 1.648 × 106 1953 1.923 × 106 1977 3.140 × 106 P(t) = Pocht_1.491×10°e 0.0137 係数の値を計算 1.648 - 1:491' 1945-1935 0.157 10 =0.0157

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

問題1が解けません途中式含めて教えていただけると助かります

1.2 解の存在と一意性 3 1 1階常微分方程式 本章では微分方程式の中でも最も単純な1階常微分方程式の解き方を学ぶ、単 純とはいっても解がすぐに見つかるとは限らない。 比較的容易に解が得られる微 分方程式にはいくつかのタイプがあるので、それをみてみよう.これらの解法は 2階以上の、より複雑な微分方程式の解法の基礎でもある. §1.1 微分方程式の階数 ェを変数とする未知関数をg(x)として F(x,y,y,y',...) = 0 x, y(x), y(x) = dy dx' d²y y" (x) = dx2, から成る方程式: (1.1) を常微分方程式という. また, 導関数の微分回数を階数といい, 階導関数 y(n) = dmy/dr” が (1.1) の最高階数の導関数のとき, (1.1) をn 階常微分方 程式という. たとえば,x軸上で力f (x) を受けて運動する質量mの質点の時刻での 座標x (t) は, よく知られているように,ニュートンの運動方程式 m = f(x) dt² (1.2) に従う.これは変数がt, 未知関数がェ (t) の2階常微分方程式の例である. 他方,同じ問題を質点がポテンシャルV (x) の中を力学的エネルギーEで 運動しているとしてエネルギー保存則の立場で見ると, d²x + V (x) = E (1.3) と表される.この式に含まれる導関数はdr/dt だけなので,これは1階常 微分方程式である。 [問題1] f(x)=-dV (x)/dr として,上の2式が等価であることを示せ. ヒント:エネルギー保存則によりEは一定であることに注意し、 (1.3) の両辺を で微分してみよ。) 本章では,最も階数の低い1階常微分方程式について学ぶ。 §1.2 解の存在と一意性 微分方程式の解の存在やその一意性などというと大変難しそうに聞こえる が,これから見るように直観的にはそれほど難しいことではない. 1階常微 分方程式のもっとも一般的な形は (1.1)より F(x,y,y)=0 (1.4) と表される. これをの方程式と見なして, それについて解けるときには dy = f(x, y) dr (1.5) と表される.この微分方程式は、 図1.1に示したように,その解y (x) があ ったとして解曲線y= y (x) をry 平面上に描くと, 任意の点(x,y) でのこ の曲線の接線の傾きがf(x,y) であることを意味する. したがって,(1.5) を解いてy(x) を求めるというの は, 曲線y=y(z) 上の点(x,y) で その接線の傾きがちょうどf (x,y) に等しいものを見出すことに相当す る. このことからまた, (1.5) を幾何 学的に解く方法も考えられる. ry 平面上の任意の点(x,y) f (x,y) を計算し,その値を傾きとしてもつ y 0 接線の傾き: f(x,y) 図 1.1 y=y(x)

回答募集中 回答数: 0
1/6