学年

教科

質問の種類

物理 大学生・専門学校生・社会人

A.Bの電流がcにつくる磁場はなぜ図のようになるのか教えてください。 右ねじの法則をどう使えば図のようになるんですか?

例題43 平行電流がおよぼしあう力 図のように, 3本の平行で十分に長い直線状の導線A, B, とBに紙面の表から裏の向きに, Cには逆向きに,いずれも cを, 一辺10cmの正三角形の頂点に, 紙面に垂直に置く。 A 12.0Aの電流を流す。 真空の透磁率を4×10-7 N/A とする。 (1) A,Bの電流が,Cの位置につくる磁場の向きと強さはい くらか。 (2)導線Cの長さ 0.50mの部分が受ける, 力の向きと大きさはいくらか。 指針 (1) ねじの法則を用いて, A, B の電流がCの位置につくる磁場を図示し, それ らのベクトル和を求める。 磁場の強さは. H=I/(2πr) の式を用いて計算する。 (2) フレミングの左手の法則から力の向きを, 磁場 261 発展問題 524 10cm B ので,Ha=H, である。 合成磁場は,図の右 向きとなる。 H, HB は, I 2.0 10 H=HB= = = - [A/m〕 2лr 2×0.10 π 合成磁場の強さHは, F=1JHI の式から力の大きさを求める。H=2×Hacos30°=2x10x1 08 π =5.50A/m 5.5A/m 10/3 = π 解説 F30° 電流の大きさは等しく, Cまでの距離も等しい (1)A,Bの電流がC の位置につくる磁場 A,Bは,右ねじの 法則から、図のように なる。HA,HB は,そ れぞれ AC, BC と垂直である。また,A,Bの -HB CQ H (2) フレミングの左手の法則から, 導線Cが受 ける力の向きは,AB と垂直であり,図の上 HA 向きとなる。 力の大きさFは, AQ &B 10√3 F=μolHl=(4×10-7) x2.0x -×0.50 π =6.92×10-N 6.9×10-N

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

お助けをm(_ _)m

B 【問5】 (第1回レポート 【問4】 の続き) 図のように, 温度 T の環境下で、 取手のつ いたピストンがある容器の下側に物質量 n の理想気体が封じ込められていて, 容器の 上側は真空になっている. 気体は容器を通して外界との熱のやりとりは自由にできる ものとし、ピストンの質量は無視できるほど小さく, 滑らかに動かせるものとする. ピ ストンの取手の上におもりをのせてあり, 気体の体積はV」 となっている. 以下の 問いに答えよ. (i) おもりAがのっている取手の上に, 追加でおもりBをのせるとピストンはさら に下降し、しばらくしたのちピストンは静止して気体の体積がV2 となった. こ の状態変化に伴うエントロピーの変化量 AS1 2 を求めよ. (ii) おもりBだけを取り除くと, しばらくしたのち気体の体積は V1に戻ってピストンは静止した. この状態変化に伴うエ ントロピーの変化量 AS2→1 を求めよ. (iii)(発展問題) (i) (ii) それぞれの過程でのエントロピー生成 7 Sgen1→2, Sgen2→1 を求め,これらの過程の可逆性を論 じよ. (iv) (発展問題) おもりAがのって熱平衡である状態1と, おもりBがのって熱平衡である状態2の間における, ヘルムホ ルツの自由エネルギーの差 AF1→2= F2 - F1 を求めよ. (v) (発展問題) 状態変化 1→2の間に, おもり AとBの位置エネルギーが気体に与えられる. これと (iv) で求めた AF1 2 との差は何を表しているのかを議論せよ. *4 ガソリンエンジンの熱力学的モデルとされるサイクルである. C→Dが可燃性混合気の圧縮, DAが燃焼, AB が膨張, B→Cが排気・吸気 に対応する. DAにおける吸熱は温度 TA の熱源から, BCにおける放熱は温度 T の熱源へ 瞬間的に行われるものとする, *5 仕事は、体積変化に伴って圧力がするものだけとする. *6 実際のガソリンエンジンでは,過程DAでのエネルギー流入は, 熱源 A からの熱流入ではなく、 ガソリン燃焼によるエネルギー流入である. Q *7 過程 A B において, 温度 T の熱源から熱Qを受けとるとき, Sgen = (SB-SA) - T

回答募集中 回答数: 0