学年

教科

質問の種類

物理 大学生・専門学校生・社会人

大学古典力学の2質点系の問題です。 この問題の(II)で重心Gに対する相対位置ベクトルとして、解答下線部のようにおいていますが、何故こうなるのですか?分かる方がいましたら教えて下さい。

演習問題 96 2質点系の運動 (I) 右図のように xyz 座標をとる。 長さ 3r の質量の無視できる棒の両端に,それ ぞれ質量 2mmの質点を取り付けたも のが、その重心Gのまわりを一定の角 速度で回転している。 重力はy軸の負voy = の向きに働くものとし、この2質点系の y4 2m cart ro Wo m Vo. vosino- Pox VoCose ス 重心Gを, 原点から、時刻 t = 0 のときに 仰角6 (0<</2)初速度 Do = [Vox, Voy, 0]. (vo=||vo||) で投げ上げるものとする。 このとき、この回転しながら運動する 2質点系について、時刻におけ る (i) 全運動量P, (ii) 全運動エネルギーK, () 全角運動量Lを 求めよ。 また, (iv) この2質点系の位置エネルギーを求め、力学的 ネルギーが保存されることを示せ。 ただし, 2質点系の回転はxy 平面 内で起こるものとし、 空気抵抗は無視する。 ヒント! (i) 全運動量P=PG, (ii) 全運動エネルギーK=KG+K', (i) 全角運動量L=Lc+L' の公式通りに求める。 (iv) 位置エネルギーの基 準を zx平面にとる。 解答&解説 P=Pc=3mUG (ii) 2質 K = (KG ここ KG= 質量 重心 K質重Gがで対 G が, で 対 Vol (速 V01 G Toz こ Vo さ V02 -v=jo =[var-gt+v 以 G (3m) (i) 2質点系の全運動量Pは,全質量 3m が集中したと考えたときの重心Gの運動 量 Pc に等しい。 重心Gには,重力に よる加速度g = [0,-g, 0] が生じるので, その速度UGx成分は, Per PacOS (一定成分は, Voy = - gt+ vosino となる。 t = 0 のとき Poy= Posin より ∴Uc=rc=[vocose, -gt + vasin0, 0] ……① より, P=Pc=3mUc=3m [vocoso, gt + vesin 0, 0] となる。 K 162

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

物理の力学の問題について質問です。 過去問を解きたいのですが全く答えが分からないため、解いて頂けないでしょうか?

物理学 ⅡⅠ 期末試験 問題用紙も回収します。 選択式の問題は、正しい選択肢を記号で記すこと。 記述式の 問題は、解答だけではなく、 解答に至る考え方も書くこと。 ベクトルはそれとわかる よう書くこと. ① 質量mの質点の位置ベクトルを、運動方程式を Fとする。 (1) 質点の原点のまわりの回転の運動方程式を導出せよ。 (2) 外力Fが中心力のとき、 角運動量が保存することを示せ。 (3) 質点が (x,y) 平面内を運動する場合、 原点のまわりの角運動量を極座標 (r, Φ) を用いて表せ。 2② 軽い針金でできた一辺lの立方体の枠がある。 1つの頂点に糸をつけ、隣接す 頂点P1, P2, P3 にそれぞれ質量 mi, m2, m3 のおもりをつけて吊り下げたとこ ろ、静止した。 重力加速度ベクトルをg とし、 OP = r. (i=1,2,3) とおく。 7₁ g↓ (1) 系の重心 (質量中心) Gの位置ベクトルrc をri を用いて表せ。 (2) 重力は重心Gに働くとしてよいことを示せ。 (3) 糸の張力の大きさを求めよ。 (4) 重心G と支点は鉛直線上に並ぶことを示せ。 (5) OP が回転軸のときの慣性モーメントI を求めよ。 (6) P1P が回転軸のときの慣性モーメントⅠ'を求め よ。 3 固定軸のまわりで回転する剛体を考える。 剛体の質量をM,重心GとOとの距離をん, 剛体 の軸Oのまわりの慣性モーメントをIとする。 図 のようにx,y,z軸を取り、 剛体の運動を偏角めで 表す。 重力加速度をg とする。 x P3 Ø R 2₂ G Mg P2 P1 (1) 回転の方程式として正しいものを選べ。 do (a) IapzMgh cos o (b) latMghsin o (c) IamMgh cos o (d) apzMgh sino (2) 運動は微小振動であるとする。 周期Tとして正しいものを選べ。 Mgh (a) 2 I I 9 (b) 2 Mgh 2ヶ (c) 21 (d) 2π√√ h 9 (3) 運動は微小振動であるとする。 初期条件として、角度だけ持ち上げて静か に離した。このときの重心の運動として正しいものを選べ。 但し以下では、 は微小振動の角振動数を表す。 (a) r(t) = hoo cos(ft), y(t) = h (c) π(t)=hdo sin (St), y(t)=h (e) x(t)=hdocos (ft), y(t)=hdo sin(St) (b) x(t)=h, y(t)=hdocos (nt) (d) π(t)=h, y(t) hdo sin (St) = (4) 前間の重心運動に対応した回転軸Oに働く抗力 R = Rzex + Ryey として正 しいものを選べ。 (a) R=-Mg, Ry=MhQdocos (t) (b) R=0, Ry=MhΩ2 do sin (nt) (c) R-Mg, Ry=0 (d) R=MhQ2 do cos (St), Ry=MhΩ do sin (Qt) (5) 安定に静止した状態で、 剛体に角速度ω を与えた。 この場合の力学的エネ ルギーEの値として正しいものを選べ。 但し位置エネルギーの基準点は0と する。 (a) E = 0 (b) E=Mgh (c) E-Mgh (d) E ==Iw (e) E ==Iw+Mgh (f)=1/2Iug-Migh (6) 前問の初期条件の下で、 剛体が1回転するために必要な角速度wo の最小値と して正しいものを選べ。 (a) 0 (b) √20 (c) 2Ω (d) 4Ω (7) 回転軸の位置、 すなわちんの値を変化 させたときの慣性モーメントIの変化を 表すグラフとして正しいものを選べ。 -h A" (b) $+) (d) ・h

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

お助けをm(_ _)m

B 【問5】 (第1回レポート 【問4】 の続き) 図のように, 温度 T の環境下で、 取手のつ いたピストンがある容器の下側に物質量 n の理想気体が封じ込められていて, 容器の 上側は真空になっている. 気体は容器を通して外界との熱のやりとりは自由にできる ものとし、ピストンの質量は無視できるほど小さく, 滑らかに動かせるものとする. ピ ストンの取手の上におもりをのせてあり, 気体の体積はV」 となっている. 以下の 問いに答えよ. (i) おもりAがのっている取手の上に, 追加でおもりBをのせるとピストンはさら に下降し、しばらくしたのちピストンは静止して気体の体積がV2 となった. こ の状態変化に伴うエントロピーの変化量 AS1 2 を求めよ. (ii) おもりBだけを取り除くと, しばらくしたのち気体の体積は V1に戻ってピストンは静止した. この状態変化に伴うエ ントロピーの変化量 AS2→1 を求めよ. (iii)(発展問題) (i) (ii) それぞれの過程でのエントロピー生成 7 Sgen1→2, Sgen2→1 を求め,これらの過程の可逆性を論 じよ. (iv) (発展問題) おもりAがのって熱平衡である状態1と, おもりBがのって熱平衡である状態2の間における, ヘルムホ ルツの自由エネルギーの差 AF1→2= F2 - F1 を求めよ. (v) (発展問題) 状態変化 1→2の間に, おもり AとBの位置エネルギーが気体に与えられる. これと (iv) で求めた AF1 2 との差は何を表しているのかを議論せよ. *4 ガソリンエンジンの熱力学的モデルとされるサイクルである. C→Dが可燃性混合気の圧縮, DAが燃焼, AB が膨張, B→Cが排気・吸気 に対応する. DAにおける吸熱は温度 TA の熱源から, BCにおける放熱は温度 T の熱源へ 瞬間的に行われるものとする, *5 仕事は、体積変化に伴って圧力がするものだけとする. *6 実際のガソリンエンジンでは,過程DAでのエネルギー流入は, 熱源 A からの熱流入ではなく、 ガソリン燃焼によるエネルギー流入である. Q *7 過程 A B において, 温度 T の熱源から熱Qを受けとるとき, Sgen = (SB-SA) - T

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

全くわかりません。 有識者さんどなたかよろしくお願いします…

[V) PATEICOLE I ZE ST 点にした仕事を求めよ. 【問2】図のように, 一部を切り取った半径 R の円環の左端に,鉛直上方から質量mの おもり落とし, 円環に沿って滑らせる. 最下点をおもりが通過したときの時刻を t = 0, 速さがuであったとして, 以下の問に答えよ.ただし、 重力加速度の大きさをg, 円 環とおもりの間には摩擦は無いものとする.また, 円環の中心を原点とし, 鉛直下向き を軸,水平右向きを軸にとることにし.また,回転角0 は,軸から反時計回り を正の方向として測ることにする. L (i) 時刻におけるおもりの回転角が9(t) であったとして,円環上におけるこのおも りの運動方程式を,円の接線方向と法線方向に分けて書き下せ. (円運動の加速 度については、最後のメモを参照。 作用する力を接線方向と法線方向に分解して それぞれについて運動方程式を立てよ) ( ) 接線方向の運動方程式の両辺に(t) をかけてから、tについての積分を実行*1することで, é(t) と(t) の関係式を導け. この際、積分定数は初期条件を満たす様に定める必要があることに注意せよ。 (iii) 力学的エネルギー保存則の成立条件を述べたうえで、この問いについては力学的エネルギー保存則が成立することを 示せ 円環の断面図 1 VO + C N (iv) 最下点を位置エネルギーの基準点として, 力学的エネルギー保存則の式を書き下し, それが (ii) で求めたものと一致す ることを示せ. 検索 (v) おもりが角8(t) の位置にあるとき, おもりが円環面より受ける垂直抗力 N を 8(t) を用いて表せ.((ii) の関係式と運動 方程式の法線成分を用いて0(t) は使わないようにせよ) (vi) No=2√gRのとき, おもりはどの高さまで上がることができるか.最下点からの高さで答えよ. @ mg (vii) 「最上点まで, 円環に沿って上がるための の下限を求めよ。」 という問に対して,ある学生が 「最上点においての速 度』がゼロを超えればよい.最下点と最上点で力学的エネルギー保存則を立てて 1/12mg = 1/12m² +2mgR>2mgR. これより となる」 のように答えたが,すでに (vi) で見たようにこれは誤りである。 この学生の解答のどこ 2vgR FUJITSU に誤りがあるのかを述べたうえで, 正しい解答を与えよ. メモ: 円運動の加速度 半径Rの円運動をする質点の位置をr= R (cos0i + sin j) のように表すとき (0は時刻のときの中心角), 加速度は a = RÖ (-sini + cos 0j) - RO² (cos 0i+ sin(j) と表される.なお, sin Oi + cos dj は円の接線方向の単位ベクトルで, cos di + sin Oj は円の法線方向の単位ベクトル である. -

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

全部分かりません!ちんぷんかんぷんです!💦

2/2 物理学入門 演習問題 第6回 1. (a) 減衰振動の運動方程式 d²x dx m +ym dt2 dt -at の解がx(t) = Ae™“ cos (at + 8 ) となるためには、α, y, w。 のどのような関数になら -+kx=0 なければならないか示せ。ただし、ω=√k/m はばねの振動数である。 (b) 初期条件x(0)=x,0(0) = v を満たすような解はどのようになるか示せ。その際は x(t) = Aeat cos (wt+8) = Ae-at (cos wt cosdsin wt sin δ) となることを用いて、 A,8 を消去せよ。 (c) 減衰振動の場合、ばねのエネルギー=mu²+=kx2は「常に」単調減少すること をニュートンの方程式から直接示せ。 2 2. 下図のように2つの粒子が3つのバネにつながっている場合を考える。粒子は1次 元の空間しか動かないものとし、それぞれの粒子の平衡位置 (自然長)からのずれを X1X2 とすると、全体のバネの位置エネルギーは V(x1,x2)===kx²+/=/k'(x_-x2)+=kx2 2 と書ける。ここでk, k'はバネ係数である。 粒子 1,2の質量は等しくmとする。 (b) 重心座標xG (a) 粒子 1,2 それぞれの運動方程式を書き下せ。 x₁ + x₂ 2 (c) 重心座標と相対座標に関する運動の、それぞれの周期を求めよ。 = -と相対座標x=x-x2 に対する運動方程式を書き下せ。 Free free 00000 X2 elllllllll X1 IC

未解決 回答数: 0
物理 大学生・専門学校生・社会人

ぜーんぶ分かりません 解説付きでお願いします

【圧力,血圧,仕事とエネルギー, 温度と熱】 問① 右の図において, ポンプからの圧力 P1 を次の(A)~(C)にしたがって表せ。 ただし、水の密度は1g/cm² とする. (A) 単位を mmH2Oとして表せ. (B) 単位を mmHgとして表せ. (C) 単位を Paとして表せ (水の密度を単位変換してから計算すると良い) . 問② 平均血圧 110mmHgの人が、仰向けで寝ている時は、 心臓部、頭、足の動脈の血圧は110mmHgで同じだった。 右図のように起立した直後、 心臓部の血圧が110mmHg であったとき、頭部と足部の動脈の血圧をそれぞれ計算 して、 血圧値を右図の( )内に記入せよ。 (ただし、血液の密度は水と同じとみなし、 水銀の密度は血液や水 の密度の 13.6倍とする。 血管の摩擦や血液の粘性は無視する。) ( ) mmHg -163.2 cm ポンプからの圧力 110 mmHg -122.4 cm ) mmHg 0cm 問④ (A) おむすび1つの熱量が 180kcal であるとき, これは何kJになるか? 大気圧 Po 問③(A)質量 500gのボールが高さ30mのところにあるとき,何Jの位置エネルギーを持っているか? (B) 15℃のエタノール 100g と 60℃の水 500gを混ぜて600gのアルコール溶液を作った. この溶液の温度は何℃になるか? ただし、簡単にするため、エタノールの比熱は 2.09J/g℃として計算せよ. ・頭部 (B) (A) の状態からボールを落下させたとき, 高さ0mに到達したときのボールの速度は何m/sか? (ただし、空気抵抗やボールの回転は無視する) 水 ・足部 30cm ・心臓部

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

解き方と答えがわからないので教えてほしいです。お願いします。

力のモーメント:腕に垂直な力の成分×腕の長さ INJ に! 125m [7] タイヤのナットを長さ25cmのレンチを使って回そうとしている。 200Nの力を30°の角度で加える ときの力のモーメントを求めなさい。 200N Fr=200N =200N -25cm- 200N Fr J =100√3N M=1000f3N×0.25m 25 √3 N.m [8] 水平な床の上に荷物が置かれている。 (1)~(3) の力がした仕事をJ単位で求めなさい。 (1) 鉛直上向きに 10Nの力で 1m 持ち上げたとき、この力がした仕事 (2) 右向きに 10N の力で 3m移動させたとき、この力がした仕事 (3) 荷物が右向きに1m移動して静止した。 このとき摩擦力 2Nがした仕事 1 x 57 c 0-7 cos 300 $ 2 [9] 質量 80kg のバーベルを 0.7秒で 50cm 持ち上げたとき、発揮したパワー (仕事率)をW単位で求め なさい。 0.7 ION X 1 = 10 J 10N×3m=右向きに3丁 -2NX1m=2丁 (左向きに2J) [10] 運動エネルギーの変化量を求めなさい。 (1)質量 1.0kgの物体が速度 1.0m/s から速度 4.0m/s になったとき k=1/12x1kg (2) 質量 3.0kgの物体が速度 4.0m/sから速度 1.0m/sになったとき 2560W [11] [ ]内の位置を基準にしたときの、重力による位置エネルギーをJ単位で求めなさい。 (1) 床から1.0mの高さにある質量 3.0kgの物体の位置エネルギー 〔床を基準〕 (2) 床から1.0mの高さ、 天井から0.5m下にある質量 2.0kgの物体の位置エネルギー [天井を基準〕

回答募集中 回答数: 0
1/7