学年

教科

質問の種類

物理 大学生・専門学校生・社会人

1から5の問題が全く持ってわかりません 明日までに解かなければならないので解説してくれる方がいたら嬉しいです

1. 次の式の両辺の各項の次元を調べよ。 但し、は長さの次元、tは時間の次元、mは質量の次元であり、 v を 速度、gを重力加速度、 f を力とする。 力の次元は[f]=MLT-2。 (10) (a) f=mg-ku となるときのの次元を求めよ。 このkを用いた式: mg k の中身の次元を求めよ。 (b) (a) と同じょを用いた式: 4.2 次元極座標の速度表示 問題 2. ある物体が2次元上を運動し、そのx,y座標が時間tの関数として、 r = Acos(wt+a), y = Asin(wt+a) で与えられている。このとき、この物体の速度ベクトルと加速度ベクトルを時間tの関数として求めよ。 (20) 5.2 次元極座標の加速度表示 合には、 der dea と dt d.t 3. 式 (11), (12) の両辺を時間で微分することにより、 去する。) この計算結果でわかる通り、 極座標の基本ベクトルは時間とともに変化する。 (20) v² mg k T = dr dr dt dt do e を導け。 この式でわかるように、 速度の方向成分がの時 dt dr dt 間微分なのに対し、 0 方向成分は、 半径 × 角速度となっている。 等速円運動の場合には、 = 0 なので、 v=rw になる。 (20) m --t t+ (em-1) の次元。 der dt2 -er + r 問題 d²r dt2 になることを示せ。 (30) -t 1-em の次元およびe を計算し、er と e で表せ。 (ex, ey を消 do dr do d²0 r (1) ² } e₁ + {2 d d + ² } er dt dt dt dt2 ee を導け。 等速円運動の場

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

この問題は、高校の熱力学ですよね?

以下の問に答えよ. エネルギー等分配則と2原子分子気体の比熱に関する以下の文章の空欄[ア][ク]を埋めよ.[ウ]は語句,[カ]は数 値、それ以外は数式である. 気体定数をR (R=kBNA, kB : ボルツマン定数, NA:アボガドロ数),気体の絶対温度をTとする。 一辺の立方体(各辺はそれぞれx,y,z軸に平行) の容器の中に1モルの単原子分子理想気体を封入する. 質量mの1個の気体分 子がx軸の方向にある速度vで運動し壁面に弾性衝突するとする.この気体分子がx軸に垂直な片方の壁面に時間tの間に衝突 する回数は[ 1モルの分子が壁面に加える力を ]である. Fとして、その力積Ftは[イ] の平均のNA倍である. 壁面に加わる圧力が FIL2で表せることから, v2の平均をvとして (気体の圧力)×(気体の[ウ])=(気体の全質量)x vという関係式が得られる. 1モルの気体に関するボイル・シャル ルの法則から、12mvx^2=[エ]が得られる.これは気体分子1個の一つの軸方向への運動エネルギーの平均を意味している実 際にはx軸のほかにもy軸、z軸があり、12v2x^2+12+12²より +1+1が成り立つ.また,これら三つの軸は等価である か つまり三つの運動の向き (自由度) に対して等しいエネルギー [エ] があるため, 気体分子1個の平 ける. 均エネルギーは[オ]となる. このすべての力学的自由度に対して等しいエネルギー[] が分配されることを 「エネルギー 「等分配則」という. 1個の気体分子が時間tの間に壁面に与える力積は[ ]であり, ここで、 水素や酸素のような2原子分子を考えよう. 2原子分子は並進運動 (x軸、y軸, 2軸の各方向) 3, 回転運動が[カ], 振動が1の自由度を持つ。 振動の自由度を無視すると, エネルギー等分配則を用いて2原子分子1個の平均エネルギーは [キ], 1モルあたりの全エネルギーを考えると, 定積比熱は[ク] となる.

解決済み 回答数: 1