学年

教科

質問の種類

物理 大学生・専門学校生・社会人

物理の問題です。 解説してもらいたいのですが、なぜ積分をするのですか?高校物理取ってなくて分からないところだらけなのです。解説お願いします。

[1] 図のように、斜面方向下向きにX軸 (単位:m) をとり,傾斜角0 (単位: rad) の斜面上の最下点からの距離 (単位:m) 最下点を通る基準水平面か らの高さん (単位:m) に原点Oをとる。 半径R (単位:m), 質量M (単位: kg) の剛体球が,時刻 t0Bに点Oから初速0m/sで降下する。 重力加速度 の大きさを(単位:m/') とし, この運動において、力学的エネルギー保存則 が成り立つものとする。 このとき, (1)~(6)に答えよ。 X 剛体球 h まず,剛体球と斜面との間の摩擦が無視できる場合について考える。 (1) 剛体球と斜面との間の摩擦が無視できて、剛体球が回転することなく滑って斜面上を降下するとき、この剛体球の並進運動 の運動方程式を書け。 (4) 斜面上を滑ることなく転がる剛体球の角速度の大きさ : w= であることを説明せよ。 次に, 球と斜面との間の摩擦が無視できない場合について考える。 剛体球と斜面との間の摩擦が無視できないとき,剛体球は 滑ることなく転がって斜面上を降下した。 1=MR² -MR2 であることを示せ。 (2) 半径R (単位:m) 質量M (単位:kg) の剛体球の慣性モーメントⅠ (単位:kg'm') が, I = ただし, 半径r (単位:m), 質量m (単位:kg) の薄い球殻の慣性モーメントが -mr² (単位:kg・m) であること, 半径r (単位:m) の球の表面積が 4πr2 (単位:m') であり、体積が -TTT" (単位:m) であることを、 それぞれ用いてよい。 3 4 3 (3) 剛体球が点Oで静止している状態からの剛体球の質量中心Cの周りの回転角をゆ (単位 : rad) とする。 剛体球と斜面との間 の摩擦力の大きさを F (単位:N) として,この剛体球の運動方程式を並進運動と回転運動に分けてそれぞれ書け。 de のとき、この剛体球の斜面方向の速さ : v=Rw (単位:m/s) dt (5) (3)の並進運動の運動方程式と回転運動の運動方程式を連立して, この剛体球の斜面方向の並進運動の加速度の大きさが gsin0 (単位:m/s) で与えられることを示せ。 5 (6) この剛体球が斜面上を滑ることなく転がるとき, 最下点におけるこの剛体球の斜面方向の並進運動の速さ V(単位:m/s) が V = -gh (単位:m/s) で与えられることを示せ。 10 7

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

答え教えてほしいです!多くてすみません。

問題 1. 長さ ru のひもの先端に、質量のおもりを結ん で滑らかな水平面上で速さ 2 の円運動をさせ た。 その後、 ひもを円の中心方向に非常にゆっく りと引っ張って、長さを ro/7 にした。 このことに ついて、 下記の問いに答えなさい。 (a) この過程を通じて、 おもりの角運動量は保存 することを示せ。 1点 (b) ひもの長さr が ro≧r ≧ro/7 のときの、 お もりの速さと、 ひもがおもりを引く力の大 きさ F を求めよ。 2点 (c) ひもの長さが ru から ro/7に変化したときの おもりの運動エネルギーの変化量を求めよ。 ・・・1点 (d) ひもがおもりになした仕事を計算し、 おもり の運動エネルギーが増加した理由を説明せよ。 2点 2. 質量が M, 半径が α、 高さ (厚さ) がもの一様な 剛体円柱を考える。 それが、 仰角 6 の斜面を滑ら ずに転げ落ちる運動を考える。 剛体の重心は、常 に一つの平面内を運動し、 回転軸は常にこの平面 に垂直であるとする。 2-18 図に示したように、 重 心が運動する平面を ry平面にとって、重心の座 標を (2G, YG) とする。 また、円柱が斜面から受け る摩擦力の大きさをF、 垂直抗力の大きさをRと する。 Mg R 2-18 図 斜面を転落する円板 (a) (rg, yg) が満たすべき運動方程式を記しなさ い。... 1点 (b) 回転軸周りの力のモーメントの大きさNを 求めなさい。 ... 1点 (c) 回転軸周りの円柱の慣性モーメント Ⅰ を求め なさい。... 1点 (d) 剛体の回転角をとして、心が満たすべき回 転の運動方程式を記しなさい。 ... 1点 (e) 滑らないで転げ落ちるための条件式を記しな さい。 ...1点 (f) F が満たすべき方程式を記しなさい。・・・ 1点 (g) IGが満たすべき運動方程式を記しなさい。... 1点 3. 上記の運動の初期条件を次式で与えるとして、 下 記の問いに答えなさい。 t=0のとき、 πc (0)=L, Uc(0)= =0 drG dt (a) 任意の時刻における v(t) と rc (t) を求 めなさい。... 2点 (b) ro(t)=10Lのとき、 をLで表せ。... 1点 (c) このときの位置エネルギーの減少量Uを求め なさい。 ... 1点 (d) このときの重心の運動エネルギー KG を求め なさい。... 1点 (e) このときの回転エネルギー Krot を求めなさ |1点 い。 (f) この運動に関してエネルギー保存則は成り立 っているかどうか論じなさい。 ・・・1点 (g) 円柱の外枠の質量は無視できるとして、円柱 の中身が質量 M の液体で満たされている場 合を考える。 外枠と液体の間の摩擦が無視で きる場合は、液体は回転せずに滑り落ちると 考えられる。 中身が液体の場合と固体の場合 について、 落下速度がどうなるかについて、 エネルギー保存則と照らし合わせて論じなさ 1点

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

力学の問題です。回答だけでもいいので教えていただきたいです!!

質量mの物体を水平面と0 (ただし, 0 0 < ™/2) の角をなす方向 に速さで投げ上げた. この物体の運動を調べるために, 水平方向で 物体が進む向きを を設定する. このとき, 時刻における物体の位置と速度をそれぞれ ((ty(t)), (x(t), ey(t)) で表すことにして, 時刻t=0における物体の位 置は (x(0),g(0)) = (0, 0) であるとする. また, 空気抵抗は無視できてこ の物体に働く力は重力 mg =-mge のみであるとして, 以下の問いに答 えよ. (1) 運動の様子を図示せよ. 物体に働く力も記入すること. (2) 方向と方向それぞれの運動方程式を立てよ. (3) 速度の成分v(t) とy成分y(t) を求めよ. (4) 位置の成分ェ(t) とり成分y(t) を求めよ. (5) この物体が最高点に到達したときの水平面からの高さを求めよ. 解答群 (1) (a) (c) (b) 0, mg (2) (a) mgsin0, mg cos0 鉛直上向きを+y方向とする座標系 方向とし, dvx dt mg cose mg sin 0 dvy (c)m =mgsino, m=mg cos0 dt (5) (a) (b) .mg (c) (d) X =-mg (b) dvr dvy (d) m- = 0, m- dt dt (3) (a) vェ(t) = vosin0, vy(t)=-gt + vo cos 0 (b) x(t) = vot cos0, y(t)= vm sin (20) g sin A cost 2g sin20 2g vcos²0 2g (d) (b) ux(t) = up cos0, vy(t)=-gt+vo sin 0 0 (c) ux(t) = gtsin0, vy(t) = - gt cos0 + vp sin 0 (d) ux(t) = gt cos0, vy(t) =-gtsin0 + vp cost y (4) (a) x(t) = vot sin0, y(t) = -12gf2 + vot cost y(t) == /2gt² + 0 (c) x(t)=1/2gt-sino, y(t) = -12gt-cos0 + vot sin0 1 (d) x(t) = ½gt² cos0, y(t) = −gt² sin + vot cos + vot sin 0 img sino mg mg cos e x x

回答募集中 回答数: 0