学年

教科

質問の種類

物理 大学生・専門学校生・社会人

15番の解き方が分からないです💦

号 下の文は、 15 答えなさい。 たらきと小 みについて実験したときの会話である。 次の問い に近距離が100mの虫眼鏡を使っており は, ラを作り,どのような像がうつるのか観察をして つきます。では、カメラの作り方を説明しまし <簡易カメラの製作> 外箱 工作用紙で長さ30cmの外箱を作ります。 外箱の正 面に丸い穴を開け、その外しま す。反対側の面は開いています。 図1 虫眼鏡 30cm 外箱 図3 物体A 物体Aを近づける 側面 丸い穴 ⑩ Donggingungan 内箱 外箱に差し込めるよ うに、少し小さい内 箱を作ります。 長さ は30cmです。 内箱 の正面にトレーシン グペーパーを貼り スクリーンとします。反対側の側面は開いていま す。側面に目盛りを貼り, スクリーン側を0cmと します。(図1⑥図2) 内箱 目盛り スクリーン ⑥ 外箱は固定 130cm 図2 「スクリーンスクリーン側を -0cm とする NOUDA martphonebige 内箱 スクリーン 内箱 先生外箱 内箱をスクリーン側から差し込みます。 内箱の開いている方からスクリーンをのぞくと、 外箱の虫眼鏡から入った光により, スクリーンに うつる像を観察することができます。 そして 内 箱を差し込んだ長さを目盛りで読み取ると, 虫眼 鏡とスクリーンの距離を求めることができます。 (図3)。 <実験〉 先生外箱を固定し, 物体Aを虫眼鏡に25cm, 20cm, 15cm, 10cm,5cmと近づけます。 そのたびに スクリーンにはっきりとした像がうつるように, 内箱の差し込む長さを調整します。 はっきりとし た像がうつるところで, スクリーンにできる像の 大きさ,像の向き,内箱を差し込んだ長さを調べ ます。 生徒 物体Aを25cmから虫眼鏡に近づけていき、像が きれいにうつるように内箱を調整すると、内箱の 目盛りの値は ( ① ), 像の大きさは ( ② )なっ ていきます。 スクリーンにうつる像を (③)と 呼ぶのですね。 さらに物体Aを虫眼鏡に近づける 先生 スクリーンに像がうつらなくなりました。 を抜いて、性質の距離が貸して下さい。 虫眼興 を通して像が見えるのが分かります。 問1. (①),(②)に当てはまる語句をア~カから1 つ選び記号で答えなさい。 2 2 ア 変わらず 大きく 大きく イ 変わらず エ 大きくなり 小さく 小さく 大きくなり 大きく オ 小さくなり カ小さくなり 小さく 2. (③)に当てはまる語句を漢字で答えなさい。 問3. スクリーンにうつる像が、物体Aと同じ大きさにな るようにしたい。 次の問いに答えなさい。 (1) 物体Aと虫眼鏡との間の距離を何cmにしたらよい か, 整数で答えなさい。 (2) 内箱の差し込んだ目盛りの値は何cmになるか,整 数で答えなさい。 (3) スクリーン後方から観察できる像はどれになるか。 ア~エから1つ選び記号で答えなさい。 ア イ ウ エ 物体B 問4. 同じ虫眼鏡を使い, 下図のように物体Bを虫眼鏡か ら5cmの位置に置いたとき, 虫眼鏡をのぞくと実物よ り大きな像が見えた。下図は物体Bと虫眼鏡の模式図で ある。 物体Bの先端からでる光のうち, 凸レンズの軸 (光 軸)に平行な光の道すじとレンズの中心を通る光の道す じについて下の図に作図しなさい。 また,虫眼鏡を通し て見える像についても作図しなさい。 ただし, 像を求め るために描いた線は残しておくこと。(※1目盛り2.5cm とする。) 虫眼鏡 凸レンズ) 凸レンズの軸 (光軸) なさい。 (1) 凸レン】 cmか, 答 する。 (2) 半透明 を何とい 実験 2 図 1 電球 物体 凸レンズ 焦点 図3のよ の人形を に凸レン <沖縄県 > 16 凸レンズを用いた簡易型カメラをつくろうと考え, 凸レンズによってできる像について調べるために 次の実験1, 実験2を行った。 あとの各問いに答えなさい。 実験 1 凸レンズの中心 明のスク 2つ (外箱 用いて, のスクリ ぞきなが けた状態 マの人形 問3. 実験 図5の はみ出 ンには かった 半透明の 19 焦点 スクリーン 一点A クリー 切なも なさい は問わ ア イ. ウタ の I. を オ. カ4に半態半とあと 図1のような実験装置を 組み立て, 凸レンズと矢印 が直交した形の穴があいて いる物体を固定し, 半透明 のスクリーンの位置を光学 台の上で動かすことができ 光学台 るようにしておく。 半透明 のスクリーンの位置を動かして, 半透明のスクリーンに はっきりした像を映し、 その像を半透明のスクリーンの 後方から観察した。 図2 問1. 実験1において, 物体の上向きの矢印 点 の先端を点Aとす る。 右の図2は,点 Aから出た光の道す じを模式的に表した ものである。 点Aから出た ① ② の光が、凸レンズを通 過した後の光の道すじをそれぞれ図にかき入れなさい。 問2. 半透明のスクリーンの位置を動かして、 半透明のス クリーンにはっきりした像を映した。 次の (1), (2) に答え -59 問 4. び

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

問1から問8までの物理の解き方と答えを教えてほしいです お願いします🙏

☆ 演習 ☆ ※ 以下の間題は,いずれも等加速度直線運動である。 問5 右向きに速さ 8.0 m/s で進んでいた物体が,左向きの加速度 2.0m/g2で 3.0秒間進んだ。この間の変 位は,どちら向きに何 m か。 問1 静止していた物体が,右向きの加速度1.2m/s?で15秒間進んだ。このときの速度は,どちら向きに 東向きを正と、する。と ひ- Vot at より 0+ (+ト2)x15 何m/s か。 ジ。) 1.2 ひ= 5 6'0 8 そ=5 東向きて8m1s 問2 右向きに速さ 14 m/sで進んでいた物体が,一定の加速度の運動を始め,4.0秒後に速度が右向きに 24 m/s になった。加速度は, どちら向きに何 m/g? か。 間6 右向きに速さ 4.0m/s で進んでいた物体が, 左向きの加速度2.0 m/s? で7.0秒ゆ間進んだ。この間の変 位は,どちら向きに何 m か。 東向きを正じすると 2: Uo+ of より 14+ ax 4.0 4.0a a= 2,5 東肉きに 25m/5 Uo = 14 ひ= 24 24 t= た40 問3 右向きに速さ 12 m/s で進んでいた物体が,左向きの加速度 1.2m/s?の運動を始めた。速度が左向き に18m/sになるのは何秒後か。 問7 右向きに速さ 8.0m/s で進んでいた物体が, 左向きの加速度 2.0 m/g? の運動を始め, 物体は静止し た。この間の変位は,どちら向きに何 m か。 2-ひる:202より Co=12m/s 12mlt -0 問4 右向きに速さ 3.0m/s で進んでいた物体が, 右向きの加速度 1.0 m/e"で 4.0秒間進んだ。この間の変 位は,どちら向きに何m か。 問8 静止していた物体が,右向きの加速度 2.0m/s?の運動を始め,右側に9.0m 移動した。このときの 度は、どちら向きに何 m/s か。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

問2の(3)(4)を教えてください

問2. ばね定数 k [N /m] (k > 0) の軽いばねがある。なめらかな水平面上でこ 自然長 のばねの左端を固定し、右端に質量 m kg] の物体を取り付けた。次に、 手で mm 物体を引っ張ってばねを自然長より cm 伸ばしてから静かに手を放した。図 0 に定義された座標軸に基づいて、その後の物体の運動について、以下の間に答 えよ。ただし,時刻 ts]での物体の位置を (t) [m] とし、ばねが自然長のときの物体の位置を原点とする。 (1) Find the restoring force F, [N] that the spring tries to return when the object is displaced by z m from its natural length. (2 points) d'z as its acceleration. dt? (2 points) (2) Find the equation of motion of the object, using the notation of (3) Find the general solution of the equation of motion of the object. (3 points) (4) Find the solution that meets the initial conditions described in the problem. Here, the moment when the hand is released is set as time t==0s. (3 points) 問3.問2では摩擦などの抵抗力がない理想的な単振動を扱ったが、実際には抵抗力が存在する。 抵抗力は速度 dt に比例することが多く、この比例定数をc[N.s/m] (c> 0) とおくと、 運動方程式は教科書 P.66 の(2.40)式として表 される。この方程式の一般解は、 教科書 P.52に示す「定数係数の2階線形同次微分方程式の一般解」として表され、 教科書 P.66 の下段3行に示すような解 a) c)となる。これらの解の導出課程を、 以下の手順に従って示せ。 d。 da. (1)(2.40)式 m = ーkc - c dt? の右辺において、c dt の項の符号がマイナスである理由を考察せよ。 dt (2点)

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

問2の(3)(4)を教えてください

問2. ばね定数 k [N /m] (k > 0) の軽いばねがある。なめらかな水平面上でこ 自然長 のばねの左端を固定し、右端に質量 m kg] の物体を取り付けた。次に、 手で mm 物体を引っ張ってばねを自然長より cm 伸ばしてから静かに手を放した。図 0 に定義された座標軸に基づいて、その後の物体の運動について、以下の間に答 えよ。ただし,時刻 ts]での物体の位置を (t) [m] とし、ばねが自然長のときの物体の位置を原点とする。 (1) Find the restoring force F, [N] that the spring tries to return when the object is displaced by z m from its natural length. (2 points) d'z as its acceleration. dt? (2 points) (2) Find the equation of motion of the object, using the notation of (3) Find the general solution of the equation of motion of the object. (3 points) (4) Find the solution that meets the initial conditions described in the problem. Here, the moment when the hand is released is set as time t==0s. (3 points) 問3.問2では摩擦などの抵抗力がない理想的な単振動を扱ったが、実際には抵抗力が存在する。 抵抗力は速度 dt に比例することが多く、この比例定数をc[N.s/m] (c> 0) とおくと、 運動方程式は教科書 P.66 の(2.40)式として表 される。この方程式の一般解は、 教科書 P.52に示す「定数係数の2階線形同次微分方程式の一般解」として表され、 教科書 P.66 の下段3行に示すような解 a) c)となる。これらの解の導出課程を、 以下の手順に従って示せ。 d。 da. (1)(2.40)式 m = ーkc - c dt? の右辺において、c dt の項の符号がマイナスである理由を考察せよ。 dt (2点)

回答募集中 回答数: 0