学年

教科

質問の種類

物理 大学生・専門学校生・社会人

この量子力学の一次元ポテンシャル問題が分かりません.可能であれば解説をしていただきたいです.初心者なので丁寧に教えて下さい!

3.w(x)を実関数として以下の形に書くことができるポテンシャルに対する質量mの粒子 の1次元ポテンシャル問題を考える. =2727 V(x) = 2m ·(w¹²(x) — w'(x)). (3.1) ここで,'はxによる微分を表す。例として,w(x)=(mw/2h)x2のときにV(x)はよく知られ た角振動数の調和振動子のポテンシャルから定数を引いたものになる. (a)を運動量演算子,父を位置演算子として、この系のハミルトン演算子は,一般にある 適切な実関数f(x)を用いて 1 2m =(i+if(x))(i-if(x)) (3.2) という形に書くことができる. f(x) を具体的に求めることでこのことを示せ.このこと から,この系のエネルギー固有値 En (n=0,1,...)は非負であることがわかる. 以下では, EoE1E2.・・とする. (b) エネルギー固有値E。=0の束縛状態が存在する場合を考える.この基底状態の波動関数 (x)を求めよ. ただし, 規格化定数は問わない. (c) ポテンシャルV(x)が V(x)= == 2 2 h² + = 1 ;(tanh?(x/a). ma² cosh2(x/a) 2ma² 2ma2 cosh² (x/a)) (3.3) (aは定数) のとき,対応するw(x) を求めよ. また, その結果を利用して、ポテンシャル が 2 U(x) = - ma²cosh2(x/a) (3.4) で与えられるときに基底状態のエネルギー固有値と波動関数を求めよ. ただし, 規格化 定数は問わない. (d) (3.1) 「対」になるポテンシャル V(x) = h² (w12 (x) + w" (x)) (3.5) を考える.この「対」になる系の束縛状態のエネルギースペクトルÉmはÉm=E(=0) となるものが存在しないことを除いて束縛状態のEnと一致する,すなわち,Ēo = E1 E1 = E2, ... となることを示せ. (e) ポテンシャル(3.3)と 「対」になるポテンシャルV (x) を求め, (4) の結果を利用すること で、ポテンシャルが (3.4)で与えられるときの束縛状態の個数を求めよ.

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

物理の力学の問題について質問です。 過去問を解きたいのですが全く答えが分からないため、解いて頂けないでしょうか?

物理学 ⅡⅠ 期末試験 問題用紙も回収します。 選択式の問題は、正しい選択肢を記号で記すこと。 記述式の 問題は、解答だけではなく、 解答に至る考え方も書くこと。 ベクトルはそれとわかる よう書くこと. ① 質量mの質点の位置ベクトルを、運動方程式を Fとする。 (1) 質点の原点のまわりの回転の運動方程式を導出せよ。 (2) 外力Fが中心力のとき、 角運動量が保存することを示せ。 (3) 質点が (x,y) 平面内を運動する場合、 原点のまわりの角運動量を極座標 (r, Φ) を用いて表せ。 2② 軽い針金でできた一辺lの立方体の枠がある。 1つの頂点に糸をつけ、隣接す 頂点P1, P2, P3 にそれぞれ質量 mi, m2, m3 のおもりをつけて吊り下げたとこ ろ、静止した。 重力加速度ベクトルをg とし、 OP = r. (i=1,2,3) とおく。 7₁ g↓ (1) 系の重心 (質量中心) Gの位置ベクトルrc をri を用いて表せ。 (2) 重力は重心Gに働くとしてよいことを示せ。 (3) 糸の張力の大きさを求めよ。 (4) 重心G と支点は鉛直線上に並ぶことを示せ。 (5) OP が回転軸のときの慣性モーメントI を求めよ。 (6) P1P が回転軸のときの慣性モーメントⅠ'を求め よ。 3 固定軸のまわりで回転する剛体を考える。 剛体の質量をM,重心GとOとの距離をん, 剛体 の軸Oのまわりの慣性モーメントをIとする。 図 のようにx,y,z軸を取り、 剛体の運動を偏角めで 表す。 重力加速度をg とする。 x P3 Ø R 2₂ G Mg P2 P1 (1) 回転の方程式として正しいものを選べ。 do (a) IapzMgh cos o (b) latMghsin o (c) IamMgh cos o (d) apzMgh sino (2) 運動は微小振動であるとする。 周期Tとして正しいものを選べ。 Mgh (a) 2 I I 9 (b) 2 Mgh 2ヶ (c) 21 (d) 2π√√ h 9 (3) 運動は微小振動であるとする。 初期条件として、角度だけ持ち上げて静か に離した。このときの重心の運動として正しいものを選べ。 但し以下では、 は微小振動の角振動数を表す。 (a) r(t) = hoo cos(ft), y(t) = h (c) π(t)=hdo sin (St), y(t)=h (e) x(t)=hdocos (ft), y(t)=hdo sin(St) (b) x(t)=h, y(t)=hdocos (nt) (d) π(t)=h, y(t) hdo sin (St) = (4) 前間の重心運動に対応した回転軸Oに働く抗力 R = Rzex + Ryey として正 しいものを選べ。 (a) R=-Mg, Ry=MhQdocos (t) (b) R=0, Ry=MhΩ2 do sin (nt) (c) R-Mg, Ry=0 (d) R=MhQ2 do cos (St), Ry=MhΩ do sin (Qt) (5) 安定に静止した状態で、 剛体に角速度ω を与えた。 この場合の力学的エネ ルギーEの値として正しいものを選べ。 但し位置エネルギーの基準点は0と する。 (a) E = 0 (b) E=Mgh (c) E-Mgh (d) E ==Iw (e) E ==Iw+Mgh (f)=1/2Iug-Migh (6) 前問の初期条件の下で、 剛体が1回転するために必要な角速度wo の最小値と して正しいものを選べ。 (a) 0 (b) √20 (c) 2Ω (d) 4Ω (7) 回転軸の位置、 すなわちんの値を変化 させたときの慣性モーメントIの変化を 表すグラフとして正しいものを選べ。 -h A" (b) $+) (d) ・h

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

量子力学の教科書で「非相対論的な計算では付加定数を適当に取るのでε=hνから求めたνの値にはあまり意味がない」とはどう言う意味ですか? この教科書ではεをエネルギー、hをプランク定数、νを振動数としています。

12 p=√2meV となり (1) の第2式から陰極線の波 長入は 1 量子力学の誕生 h h Þ √2me V と計算されることがわかる. me に数値を代入すれば, i= 入= 150 A (1Å=10-10m) V 14 1-8図 Si 単結晶 (111) 表面の低速電子 線回折写真(入射エネルギー 43eV) ( 村田好正氏 (東京大学名誉教授) によ る) となる. V~100Vの程度では陰極線 の波長は1Åの程度になる. この程度の波長の彼ならば, X線と 同様に, 結晶内に規則正しく並んだ原 子によって回折現象を起こすはずである. 事実 , アメリカのデヴィッスンと ガーマーはニッケルの単結晶で電子線を反射させ,X線のときと同様な干渉 図形を得た (1927年). また, わが国の菊池正士は薄い雲母膜で, イギリスの トムソンは薄い金属膜で,電子線の回折像を得て,ド・ブロイの予言の正し いことを実験的に立証した. ド・ブロイの原論文では,相対論的考察が用いられているが,p=h/入は 以下の非相対論的な議論でもそのまま使われるエネルギーの方は,普通の 非相対論的な計算では付加定数を適当にとるので,ε= hv から求めたの値 そのものにはあまり意味がない. しかし、 実際に測定値と比較されるのはい つもショー vmという差の形になるので、不定の付加定数を気にする必要はない. §1.4 波動力学の形成 よく知られているように張られた弦や膜とか管内の空気の振動のように 有限の範囲内に局在する波は定常波 (固有振動) をつくり, そのときの振動 数 5

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

分からない問題が多いので解説お願いします 明日テストなので早めに教えていただけると助かりますm(_ _)m

(1) 静止している人の正面前方から,960Hzの振動数のサイレンを鳴らす緊急自動車が20m/s の速さで近づいてきている。 静止している人に聞こえるサイレンの音の波長入 [m] と振動数 f [Hz] をそれぞれ求めなさい。 ただし, 音速は340m/s とする。 5. (2) 長さ0.15mの閉管の管楽器に生じる基本振動の波長[m] を求めなさい。 また,節と腹の場 所がわかるように、 右下図に基本振動の定常波を描きなさい。 (3) 音圧レベルが55dBの音の強さ 155 と, 35dBの音の強さ135の比 4. 運動エネルギーの次元を次元式の表記 [MLTY] により答えなさい。 a fi B=2 r = -2 (MaLp Th) CM'L² 7-2 光に関する以下の各問いに答えなさい。 Iss 135 閉管の管楽器 を求めなさい。 (1) 空気中において, 屈折率 n =√3のガラス面に光が入射角 60° で進んだ場合の屈折角 [°]を求めなさい。 また, ガラス中の光の速さ v[m/s] を求めなさい。 ただし、空気中 の光速は, 真空中と同じであるとして答えなさい。 ⑨:30°V=2.0x108 m/s (2) 屈折率 n = 1.5の液体の液面から 30cmに沈んでいる物体は,見かけ上では,液面から何 cmの深さに見えるのかを答えなさい。 (3) 可視光線よりも波長が短く振動数が大きな光の名称を答えなさい。 紫外線 (4) ある透明な液体の臨界角が45°であった。 この透明な液体の屈折率 n を求めなさい。

回答募集中 回答数: 0