(1) (i) 1 = SS₁₂
=S₁₁²S
√1-x² /√√2
1-sin
=
2.
(x² + y) dxdy = S₁ S²(x² + y) dydx
x² dydx = 2√1=¹ dx = 2√2 + √-3 dr
x²√1-x²
√1-x²
dx
-1
3
27
1/250 S
1
sin²20 do=
dx = cos 0 do. I = 2√2 sin²0 cos² 0 dº
√2 CR¹²1.
√2/²1-cos 40
2
(cos³0+ sin 6) dvdo
2-2
√2
0
12" 1 + cos20 do = √2
T
8
2
8
2
i) x=r cos 0, y = r sin 0/√2 < ≥, J=r/√2.
= [(*cos² 0 + √2 sin e) drdo0
√√2
2
π/2 0
de=
= ₁/² cos³ 0 do =
4 CT/2
5
8
15
=
[cos 0+32 sin ede= √2²" (cos² 0 + sin) de
4
3√2
4
3√2
π/2
r=rcoso, y = r sin0 とおくと, J = r.
S₂√x dxdy = 25" S
√2
8
3/2 cos1/20 drdo
T
y
cos
10