学年

教科

質問の種類

数学 大学生・専門学校生・社会人

電磁気の問題ですが、さっぱりわかりません。過程とともに回答していただけると幸いです 写真におさまらなかった問四以下は下記のとおりです (4) 小問(3) で求めた静電ポテンシャルを用いて、導体球外部における電場を求 めよ。 (5) 小問(4) で求めた電場より、導体... 続きを読む

一様な電場Ē。= (0,0,E) のなかに半径R の導体球を原点 (0,0,0) に置く。球 外部の近傍における電場や電荷を求めよう。 なお、 導体に関する知識は証明なく 用いてよい。また無限遠での静電ポテンシャルは一様な電場に由来する静電ポテ ンシャルを除いて0とする。 [ヒント 1] 導体表面では、静電ポテンシャルは表面の位置によらない定数で ある。 [ヒント 2] 電気双極子モーメントアは電子双極子を構成する負電荷 -g の位置 から正電荷 +q の位置へのベクトルを用いて、ㄗ = qdと定義される。 [ヒント 3] 原点にある電気双極子戸が十分遠方で作る静電ポテンシャルは 1 p.F Od(7) = 4πEO F3 である (1)上記の一様な電場Eを作る静電ポテンシャルは、do (r) = -Eoz (= -Eo-r) であることを確認せよ。 (2) 導体球の代わりに(仮想的な)電気双極子(電気双極子モーメントア)を原 点に置いた時に発生する静電ポテンシャルと、 静電ポテンシャル do (ア)の 重ね合わせを考える (電気映像法)。 原点から半径Rの球面上で静電ポテン シャルが0となるのに必要な戸に関する条件を求めよ。 (3) 小間 (2) で求めた条件を用いて、 導体球外部における静電ポテンシャルを求 めよ。 [ヒント 4] 一様電場由来の静電ポテンシャルを加えるのを忘れないように。

未解決 回答数: 1
数学 大学生・専門学校生・社会人

(2)の考え方を教えていただきたいです。 内積0を使うのかな?という検討はつきましたが、条件で与えられているベクトルをどのように扱えばいいか分からなくなってしまいました。

第1問 R3を3次元実列ベクトル全体の集合, I 3×3 を3×3 の実行列全体の集合とする. 1, 12, 73 ∈ R3は一次独立な単位長ベクトル, 4∈R3は n1, 2, ng と平行でない単位長ベクトルとす る.また,正方行列 A, B を 4 A= - 2 B = Σnin T \\n-n i=1 とする.ここで, XT, æT はそれぞれ行列 Xの転置行列とベクトルæの転置ベクトルを表 す。 以下の問いに答えよ。 (1)Aの階数が3となるような 4 に関する条件を求めよ. (2) 3次元ユークリッド空間において以下の3つの条件を満たす4つの平面 II = {æ ∈ R3 | new - d = 0} (d は実数, i = 1, 2, 3, 4) を考える (i) A の階数は3であ る, (ii) Ω = {æ ∈R3 | new-d≥0, i = 1, 2, 3, 4} が空集合ではない, (iii) II (i = 1, 2, 3, 4)に接する球C (⊂ Ω) が存在する. このときCの中心の位置ベクト ルをベクトルuER を用いて A-1u の形で表す. d (i = 1, 2, 3, 4)を用いてuを 表せ. (3) B が正定値対称行列であることを示せ. (4)4つの平面 {æ∈R3|nex-d=0} (dは実数, i = 1, 2, 3, 4) への距離の2乗和が 最小となる点P を考える. Pの位置ベクトルをベクトルver を用いて B-1 の形 で表す. ni, di (i = 1, 2, 3, 4) を用いて”を表せ. (5)13において点 Qi (位置ベクトルをER3とする)を通りに平行な直線をんとす る(i = 1, 2, 3). 任意の点R (位置ベクトルをy∈ とする) をんに直交射影した 点を R; とする.R の位置ベクトルを行列 Wi∈ R 3×3 を用いて y - Wi(y-æž) と表 す. I∈IR 3×3 を単位行列とする. (a) と I を用いて W を表せ. (b) WWWż を示せ. = (c)平面Σ = {ER3 | afx = b} を考える (a∈3は非零ベクトル, b は実数). 点SE∑はL, Iz, 13 への距離の2乗和を最小にする点である.n1, n2, n3 が互 いに直交するとき,Sの位置ベクトルをベクトルw∈3 を用いて aa ab I - w+ T ara の形で表す.ただし, は a,bには依存しないものとする. w を Wi, πi (i = 1, 2, 3) を用いて表せ. p. 1

回答募集中 回答数: 0
1/37