学年

教科

質問の種類

数学 大学生・専門学校生・社会人

確率の勉強をしている学生なのですが、この問題が分かりません。どなたか教えていただけませんか。

練習問題 1.8 (積率母関数) X を非負の確率変数とし, x(t) = Eetx は全てのt∈ に対して有限であると仮定する.さらに,全てのt∈ R に対し E [XetX] < ∞ であると仮定する.この練習問題の目的は, '(t) = E [Xetx] で あり、特に'(0)=EX であることを示すことである。 微分の定義, すなわち次式を思い出そう. 4'(t) = lim x(t) - (s) lim st t-s st EetxEesx t-s 「etx = lim E st t-s 上式の極限は,連続な変数sについて取っているが,t に収束する実数列{8}n=1を 選ぶことができ, 次を計算すればよい. 「etx e³n X lim E sn→t t-Sn これは、次の確率変数の列 etx -enx Yn = t-Sn の期待値の極限を取っていることになる.もしこの極限が, t に収束する列{Sn}=1 の選び方によらず同じ値になるならば、この極限も limotE [ex と同じで,そ れは '(t) である. .tx sx ← -e t-s 解析学の平均値の定理の主張は,もしf(t) が微分可能な関数ならば、任意の実数 s ともに対し,stの間の値の実数0で次を満たすものが存在するというものである. f(t)-f(s) =f' (0) (t-s). もしweΩを固定し,f(t) = etx(w) を定義すると,この式は, etX(w)_esx(w)=(t-s) X (w)e (w)x(w) (1.9.1) となる.ただし,(ω) はωに依存する実数 (すなわち,tとsの間の値を取る確率変 数)である. (i) 優収束定理 (14.9) (191) 式を使って,次を示せ. lim EY = Elim Yn=E [XetX] . (1.9.2) n→∞ [n→∞ このことから,求める式 4'(t) [XetX ] が導かれる. (ii) 確率変数 X は正の値も負の値も取り得、全てのt∈Rに対し Eetx < かつ E [|X|etX] < ∞ であると仮定する。 再度 '(t) = E [XetX] を示せ(ヒント: (1.3.1) 式の記号を使って X = X + - X- とせよ . )

未解決 回答数: 1
数学 大学生・専門学校生・社会人

この問題、判別式だけでできないのはなんでですか??

Think 例題 35 無理関数のグラフと直線 **** 関数 y=√2x-1 ……………① のグラフと直線 y=x+k •••••• ② との共有 点の個数を調べよ. ただし, kは実数の定数とする. 考え方 まず,無理関数 y=√2x-1 のグラフをかく. 次に,k の変化に応じて, 直線を動かして考える. 直線を上から下に平行移動するとき, 次の2つに注意 すれば, 共有点の個数の変化がつかみやすくなる. ① 曲線 ①と直線 ②が接するときのkの値 y=√2x-1 ...固定 y=x+k 変動 第2章 34 ②] 直線 ②が曲線 ①の端点 (20) を通るときのん の値 つまり、 ①を境として共有点の個数が 0個 1個 2個 ②を境として共有点の個数が 2個→1個 y=v2x-1 とそれぞれ変化する. 解答 ①のグラフは右の図のように なる. y4 まず①②のグラフが接す るときのんの値を求める. ①②より, √2x-1=x+k 両辺を2乗すると, Ø 1 1 x 2x-1=(x+k)? より, ①のグラフと数本の適 当な ② のグラフをかく. y=/20 1/2(x-1)より。 ①のグラフは y=√2x のグラフを 2 x2+2(k-1)x+k+1= 0 x 軸方向に だけ平行 移動したもの この方程式の判別式をDとすると, 重解をもつから, D 1=(k-1)-(k+1)=-2k=0より, k=0 4 次に,直線 ②が点 (20) を通るときのkの値を求める。 10/12th より k=-1/12/ 0= |接する重解をもつ ⇔D=0 ②にx=12, y=0を 代入する. 以上より, ① ② のグラフの共有点の個数は, k>0 のとき, グラフで確認する. 0個 kの値の減少により, <-12, k=0 のとき, 1個 ②は下方に平行移動す る. 1/2sk<0 のとき 2個 Focus 共有点の個数はグラフが接する場合をまず考える 練習 35 関数 y= 2x+3 +3 のグラフと直線 y=ax +2 との共有点の個数を調べよ. ** ただし, αは実数の定数とする. p.994

未解決 回答数: 0
1/36