学年

教科

質問の種類

数学 大学生・専門学校生・社会人

物理の万有引力に関する質問です。 問1と問2は答えを出せたのですが、問3以降が分からず困っています。 どなたか分かる方がいらっしゃれば教えていただけると幸いです。 ちなみに、問1と問2に合っているか分からないですが、次のような答えになりました。 問1 mg=GMm/R... 続きを読む

問1 図1のように地上から,質量mの衛星を打ち上げて軌道に乗せることを考 える. 以下の問1~問5に全て解答しなさい. ただし, 地球は点Oを中心とす る密度一様な球体とし、 地球の半径をR, 地球の質量をM, 万有引力定数をG とする.また, 地球の自転による効果については考慮しない. 地上での重力加速度の大きさを R, M, G を用いて表しなさい. 問2 衛星を地上より鉛直上向きに速さ V。 で打ち上げて, 地球の中心から2Rの点 Aに達した時に速さが0になった. この時の速さ Vo を求めなさい. 問3 衛星が点Aに速さ0で達した直後, OAに垂直な方向に速さ VAに加速して, 点Aから地球の中心を通る延長線上のOB=6R となる点 B に到着した. この時 の速さ VA,及び, 点Bに到着した時の速さ VB を求めなさい. 問4 衛星が点B に達した直後, 速さ VC に加速して地球に対し半径 6R の等速円運 動をさせる. その時の速さと公転周期 Tc を求めなさい . 問5 地球に対し半径 6R の等速円運動をしている衛星の運動エネルギーK を用いて, この衛星がもつ力学的エネルギーを表しなさい. ただし, 万有引力による位置エ ネルギーの基準点は無限遠とする.

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

流体力学の基礎方程式の中の状態方程式です。 写真2枚目の(4.3)の式がわかりません。 テキストではいきなり結論だけが書かれています。どのようにこの関係式を導出するのかわかりません。 どなたかよろしくお願いします!

} S4 状態方程式 15 ある. これに反して, 気体のような縮む流体では 密度pが未知 数であるから, 吉先および運動の方各式のはかにゃに ぅ 1 ン関係式を求めみなければならない. 8S4 状態方程式 ここでいよいよエネルギーの保存を考える段取りであるが, そのためには熱力学的な考察が必要である. これは。エネル ギー保存則というのは熱力学の第 1 法則にほかならないこと を考えれば, 容易になっとくのいくことであぁろう. そこでわ れわれは, 流体がエネルギー保存の法則を満足するという事 実を別な言葉で表わして, “流体は熱力学の法則にしたがう? と述べることにする. そうすれば, たとえば一定温度の外界 にさらされながらゆるやかに流れる流体では, 状態変化は等 温的におこるであろう. また, ふつうの和気体のように粘性や 熱伝導性の小さいばあいには, 粘性によって発生する熱(軍 動エネルギーが変換するもので, 摩擦熱に相当する) や, 温 度差に応じて伝導される熱は非常に少いから, 状態変化は断 0すなわち等エントロピー 的におこるものと考えられる. 上2のの気体では・ 理想気体の仮定が非常によ ご 人922れ・ る. それゆえ, 状態方程

解決済み 回答数: 1