学年

教科

質問の種類

数学 大学生・専門学校生・社会人

(3)がわからないです。 わかる方いたら教えてください

レポート作成上の注意: 1.名前と学籍番号を書くこと。(成績処理の都合) 2.ファイル名は「Report4」とするのが好ましい。(全角文字はバグの原因になる)(成績処理の都合) 3. 採点者が読みやすい文字で書くこと。(採点の都合) 4.問題文は書き写さない。可能な限り一枚の(明るい) pdf にまとめること。(pdf 以外は減点します)(採点の都合) 3 *3 -1<zS1のとき log(1 + z) = r となることが知られている。たとえばェ=1のとき 2 4 5 1 log 2 = 1- 2 1 1 3 4 となりェ=1/2のとき log3- log2 = log(1 + 1/2) = 1 2 3 4 5 となる。 課題、関数 f(z) = log(1 + z) を考える。 となることを数学的帰納法を用いて証明せよ。 fo) (0) (2) f(x)のェ=0におけるテイラー多項式 P,(r) = f(0) + f'(0)r + 2! n を求めよ。 n! (3) 0SS1とする。f(z) のn+1次の剰余項 Rn+1(x)を考える。テイラーの定理を用いて lim Ra+1(x) = 0 を示せ。ここでn+1次の剰余項 R+1(z) とはf(x) - P,(z) のことである。 補足:(3) の主張は、0冬ぉS1のとき f(z) = lim (P.(z) + Rn+1(r)) = lim P,(z) = f(0) + f(0)x+ 2! f"(O。 f)(0) n! 2→ となることを意味する。 注意:多くの参考文献では、f(z) のn次の剰余項 R,(z)(= f(z) - P,-1(z)を考えている。注意すること。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

わかる方教えてくださいお願いします。

レポート作成上の注意: 1.名前と学籍番号を書くこと。(成績処理の都合) 2.ファイル名は「Report4」とするのが好ましい。(全角文字はバグの原因になる)(成績処理の都合) 3. 採点者が読みやすい文字で書くこと。(採点の都合) 4.問題文は書き写さない。可能な限り一枚の(明るい) pdf にまとめること。(pdf 以外は減点します)(採点の都合) 3 *3 -1<zS1のとき log(1 + z) = r となることが知られている。たとえばェ=1のとき 2 4 5 1 log 2 = 1- 2 1 1 3 4 となりェ=1/2のとき log3- log2 = log(1 + 1/2) = 1 2 3 4 5 となる。 課題、関数 f(z) = log(1 + z) を考える。 となることを数学的帰納法を用いて証明せよ。 fo) (0) (2) f(x)のェ=0におけるテイラー多項式 P,(r) = f(0) + f'(0)r + 2! n を求めよ。 n! (3) 0SS1とする。f(z) のn+1次の剰余項 Rn+1(x)を考える。テイラーの定理を用いて lim Ra+1(x) = 0 を示せ。ここでn+1次の剰余項 R+1(z) とはf(x) - P,(z) のことである。 補足:(3) の主張は、0冬ぉS1のとき f(z) = lim (P.(z) + Rn+1(r)) = lim P,(z) = f(0) + f(0)x+ 2! f"(O。 f)(0) n! 2→ となることを意味する。 注意:多くの参考文献では、f(z) のn次の剰余項 R,(z)(= f(z) - P,-1(z)を考えている。注意すること。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

教えてください

17:17 イ ああ forms.office.com または * 指数は“を使って表記(10→10°5) (シグマ(=1,n-a) く例> * えなどの記号にバーが入る場合は、x(パー)と表記 (2+3+4+4+5) × 105 8×3 xV210 ×3 *小文字のシグマはσで表記。使用しているデバイスの 関係ですが表記できない場合は、シグマ(小)と表記 →(((243+4+d454)a10^5)/(Ra?))「(2^10x?) 3 【問題1】肺癌による入院患者のカルテか ら既婚女性の症例を選び出し、本人および 夫の喫煙状況を調べたところ、患者本人は 全く喫煙しない者100人の内、夫が常習喫煙 者である者が60人、夫も非喫煙者が40人で あった。対照群として、癌でない婦人科疾 患の入院患者から、肺癌患者群と年齢構成 が同じになるようにして非喫煙の既婚者100 人を抽出したところ、その夫が喫煙者であ ったのは40人、非喫煙者は60人であった。 この調査結果を用いて、肺癌発症のリスク を検討する。 (1)この調査の手法は疫学の何研究か。 (2)夫の喫煙による妻の受動喫煙と肺癌発症 との関連の強さを示す指標を求め、その意 味を考えよ。 (3)両群の女性に食習慣の調査を行ったとこ ろ、緑黄色野菜を毎日一定量以上食べる者 は、患者群で50人、対照群では60人であっ た。緑黄色野菜充分摂取と肺癌発症との関 連の強さを示す指標を求め、その意味を考 えよ。 回答を入力してください 日

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

正三角形の二面体群D6の自明でない部分群をすべて求めよ という問題を解いてみたのですが自信がないのでどなたか確認して下さい。 その際に指摘があれば教えてください。 よろしくお願いします。 

i衝、g束 6 (クル計OI1ZKO2 6 っ本必(4 ] レは 正三負f の中バ ょわりの友時試 回ソ はまあ3j内る と河幼の中ちと緒んた 追祥= 元の衝7 の とで才Z。 5まき 2の 7 12808NCOUW の)ンク ラ 6須軸ぐ5 ざ1 ざュ レ OO2002 5 引| の 3ぅ @② 大 | ィ。 | ン 5計生5 7 と 中 ?。 | 。。 3 中5記3間還qe3 のとう|に95 の ニレ清和20 = 3っなど 6秦のめfラ。 ょとのをとゞソルの 2 多 で老でヶネ8、 vi の<の 2 リ2O の9 とうめ でき衣 (たがてん の6個のをは インリンリル人のの PP とだま. の>とを / な 7の ごど和胡 そそ3」こ、 ことぎの関作贅 ュー ぃてガン2と ラーの 。 "= と である3ことすし の年球と> もゐ9= との半 のみつ マレと= (=の あり ビーロ ce 0 ッリニーアァ とを吉7る。 剛、 は和朋明でがぃ爺族と7べくてJeだより ro 偽数は6(-76 と 作る ストュクラノミ 多多董の科数62約下3 / 2 2 6みぃ7和本の。 / と / 『目明な部名葬より 入っ 2 っぃてあぇ8、 偽才2 飲め妊/。っぃて のpy up ys = 8 = 6の(ghg leo203) seでルウ< reうど 導/=6 @fe, /Sy は (72029) = (ば = I仙のと= のェと の1e,全は rcビー

回答募集中 回答数: 0