学年

教科

質問の種類

数学 大学生・専門学校生・社会人

増減表についてです。 赤枠で囲んだ部分のプラスマイナスを判定する良い方法を教えていただきたいです。 できれば簡単な方法でお願いします🤲

2 第1章 1変数の微分積分 例題1 (関数のグラフ, 数列) x を非負の実数,r0r<1 を満たす実数とし, 関数f(x) を f(x)=xr* と定義する。 このとき、 以下の問いに答えよ。 df (1) f(x) の導関数 および第2次導関数 dx d2f dx2 を求めよ。 (2) f(x)の増減表を書き、関数y=f(x)のグラフの概形を描け。 (3) n を正の整数とし, 数列 {a} の一般項を an=f(n-1) により定義 する。このとき,初項から第n項までの和を求めよ。 <東北大学工学部〉 ◆アドバイス! (ax)' = a *loga 証明は簡単! 解答 (1) f(x)=xr* より f'(x)=1·r*+x.r*logr= (xlogr+1)r* ・〔答〕 公式: また f" (x) = logror*+(x logr+1)*logr = logr(xlogr+2)r* ・〔答〕 (2) f'(x) = (xlogr+1)*= 0 とすると 1 x= (>0) logr f" (x) = logr(xlogr+2)*=0 とすると x=- 2 logr (> logr よって, 増減および凹凸は次のようになる。 x f'(x) f" (x) 1 2 (+8) logr logr + 0 - 0 + y=α とおくと logy = loga =x loga 両辺を微分すると y y'=loga ..y'=aloga f" (x) 凹凸: f" (x) ・f'(x) の変化 f" (x) > 0 接線の傾き ⇒接線の傾きが増加 グラフは下に凸 y=f(x) したがって (3) an= k=1 この S= SS rs= 2 f(x) 0 rlogr logr 2 2r logr logr (0)

解決済み 回答数: 2
数学 大学生・専門学校生・社会人

微分方程式について質問です🙋 ときどき、答えの方程式をどこまで整理して解答すべきなのかが分からないときがあります。 例えば写真の問題(2)のようなときです。 このままの形でよいと書かれてありますが、どういう状態で解答を終了すべきかの目安はありますか? よろしくお願いします🙇

例題8-2 ベルヌーイの微分方程式:y′+p(x)y=f(x)y") 微分方程式 y/+y=xy3 について, 以下の問いに答えよ。 (1) z=y-2 とおくとき, zが満たすべき微分方程式を求めよ。 (2) 微分方程式 y'+y=xy の一般解を求めよ。 「解説 ベルヌーイの微分方程式:y'+p(x)y=f(x)y" (m=2,3,…) は 1階線形微分方程式の応用である。z=y' -" の置き換えにより, 1階線形微分 方程式になる。 1 [解答](1)z=y-2 より, z'=-2xy-y′ :: y³y'=== Z' 2 さて,y'+y=xy の両辺をy で割ると, y_y'+y^2=x -z'+z=x よって, z'-2z=-2x ・・ 〔答〕 1階線形になった! (2) ²'2z=0 とすると, ‥. A(x)=(2x dz dx =(x-2 = 2z 両辺をxで積分すると, fzzdz=f2dx ... log|z|=2x+C z=Ae²x そこで, z=A(x) e2x とすると, z'=A'(x)e2x+2zより, z'-2z=A'(x)e2x よって,²'-2z=-2x の一般解を z = A(x)ex とすれば, A'(x)ex=-2x ∴.. A'(x)=-2xe-2x -2xe-2x)dx=xe-2x+ ₂-2x + 1² e ²³² + c) e ²¹ = x + 1²/² + ₁ e²x Cezx よって、12/20a-s+/1/2+c^ よって, z=xe 1 2 1 dz z dx e z=y^2=1/1/12より、(x+12+Ce²)y=1 ,2 =2 - 2x + C ・・・ 〔答〕 このままの形でよい。

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

先生が答えをくれません。 一応自分なりの答えは出したのですが、数学(計算も)あまり得意ではなく、自身がありません。 模範解答を作成していただきたく、質問を作成させていただきました。 何卒宜しくお願い致します。 ③

No9 1.次の広義積分が収束するか、 しないか判定し、 収束する場合はその値を求めよ. 2. 次の広義積分を求めよ. (1) (2) (1) (2) 「 L² (3) L dx 1+22 flog x da dx log sin Ode dx vi dx 1.² √ (12-18) (2-1) 1 x² No10 1. 次の広義積分が収束するようなパラメーターsの範囲を求めよ. (1) 22 (2² + y²) dxdy (3) (1 - cos(x² - y²)) dxdy (1) 120 rdy-ydx, (2) || ( ? – xy + y)dredy 1 2 +92 >1 [0.2m]×[0.2] 2. 次の広義積分が収束するようなパラメーター αβの範囲を求めよ. drdy 1242913083 z²+y² <1 No11 1. 道 Cを時計の逆周りの円+y² = d² とするとき、 次の線積分を求めよ. (2)zdy - yda x² + y² 2. 次の線積分を計算せよ. (1) 道C を z = cos0, y = sin0,z=02, 00 とする. Jo rdx+ydy + zdz, (2) 道 C2 を原点を通らない円 (æ-1)2 + y = 4 とするとき、 rdyydx Ja x² + y² 3. 次の R2 の一次形式のうち、 完全形式となるもの、つまり関数fにより、 df の形 に表せるものを選び、 そのような関数fを一つ与えよ. (1) dy+ydz (2) (3x²+y³)dx + 3xy²dy

未解決 回答数: 0