学年

教科

質問の種類

数学 大学生・専門学校生・社会人

マーカー部分となるのがわからないです🙇‍♀️ a+bは>0と捉えるのですか。

113(無理関数の最小〉 考え方 所要時間は無理関数となりますが,その導関数の符 号を調べます。 解答点Oを原点とし, 東方向に軸の正方向,北方向に 9軸の正方向となる座標平面を定め,点Rの座標を(x, 0) と Q(a+b, a) a する。 千葉君が点Pから点Qに至る所要時間を f(x) とすると QR PR 0 R(x, 0) f(x) au bw ーbfp 1 {bVz?+6°+av(a+b-£)?+a°} abu 1 2c f'(z)= 6 abu 2V2+6 -2(a +b-2) 2V(a+b-a)2+? brv(a+b-a)?+a?-a(a+b-a)V+6 abuv? + が((a+6-)2+α S0のとき f' (z) < 0 a+bSeのとき f' (x) > 0 0SaSa+bのとき, f'(z) は次の式と同符号である。 -A20, BN 0, A+ B>0 のとき A? - B2 A-B= {bev(a+b-z)? +a?}?-{a(a+b-a)V22+83? = Br{(a+b-z)°+a°}-a°(a+6-z)°(2?+8) = 8(a+b-a)°(r?-α°)+α°{6ー(a+6-a)?} = 6(a+b-a)?(r+a)(x-a) + a°a°(a+ 26 -2)(x- a) = (z-a){6° (a+b-a)? (+a)+α°2° (a+26-a)} ここで,0Sハa+bのとき 6°(a+b-z)°(r+a)+α°r° (a+26-a) > 0 だから,f'(z) は-aと同符号である。 よって, 関数f(x)の増減表は次のようになる。 A+B は A° - B? と同符号です。 -a の因数をくくり出すよう にします。 0 a a+b f'(x) f(x) 0 極小 よって,f(x) はa=aで極小かつ最小となる。 したがって, 所要時間が最短となるのは, OR %=D a のときで ある。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

1つ目:3枚目の①のとこはなぜ1になるのですか?4を1でわったら、? 2つ目:②のとこでなぜnになるのかわかんないです。 1〜2nまでの合計を求めたくて、でも前の式でやったように偶数と奇数で分かれるから分けただけなのに、2nがnになるんですか?

であり,自然数nに対して bn+2- bn は4の倍数であるから, mを自然数として 第5回 第3問~第5問は,いずれか2問を選択し, 解答しなさい。 第3問(選択問題) (配点 20) ソ セ r2= Y3= タ カ= Y= チ 等比数列{a,}の公比は正の実数であり, 数列{a,} は ツ Yam= テ Y2m-1= =9, a,-az==72 a」 as である。 であることがわかる。よって 公比は イ を満たすとする。数列 {a,} の初項は| ア 2m-1 シ b2m-172m-1+ b2mrzm=| トナ |2m-1 ニヌ ス 次に,数列{b,}は であるから 21 こ。 b,=1, bn+1 =46,+am (n=1, 2, 3, …) ネ |2n+1 シ (n=1, 2, 3, …)とおくと an b。 ノ |2n+1 ス を満たすとする。ここで, Cn=- =1 ハ キ オ -Cn t カ ウ Cn+1= ク である。 エ に当てはまるものを,次の0~⑨のうちから一つずつ選 ハ ネ であるから べ。ただし, 同じものを選んでもよい。 ケ Cn= サ コ 17 19 13 0 60 17 11 である。よって 60 30 30 15 7 6 8 13 9 5 7 b,= シ ス 15 8 4 4 である。 (数学II·数学B第3問は次ページに続く。) - 94 - 95 - の の の

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

残りの部分のうち〜のところで、「基本的な公式を変数変換して積分する」とはどういう意味でしょうか。 また、m>1の項は部分積分によって漸化式を作ってm=1に帰着するとはどういうことでしょうか。 教えてください。

楕円積分の前に, もっと簡単な積分をおさらいしておく、有理関数 多項式 多項式 arctan の組合せで書ける。詳しくは微積分の教科書)をご覧いただきたいが, お およそ次のような順番で証明する2)まず R(r) を部分分数分解する: R(z)の積分|R(z)dzは,有理関数,対数関数 log と逆正接関数 dim xteim 12 mj h mj Cim (2.2) R(z) = P(z)+2 2 + 2 と リーム+1 m=1((z-a,)+b})"* j=1m=1(c-a;)" ここで,P(x)は多項式,a, b, Cm, dpm, Ejm は実数,ム, le, m, は正の整数である.ゴ チャゴチャ面倒になったように見えるが,要は各パーツが簡単に積分できるよう に分解した,というのがアイディア. 多項式 P(z)は ST S(りひ 京をのきさ 2n+1 J* dz = (n:自然数) n+1 sbe という公式によって積分でき, 結果は多項式になる。 残りの部分のうちの m=1の項は, 基本的な公式3) ハ+ 食館 de : log (r-a), ミ C-a de S +1 arctan x, 2.c dc S? = log(z?+1) 2+1 を変数変換して積分する. m>1の項は, 部分積分によって漸化式を作ってm =1の場合に帰着する。

回答募集中 回答数: 0