学年

教科

質問の種類

数学 大学生・専門学校生・社会人

複素数の問題です。 全て解いてほしいです。 特に問題4の解説をよろしくお願いします。

問 ■複素平面と極形式 題 複素数zは:=Rez+ i Imz と書くことができ、実部 Re z をx座標、虚部 Im:をy座標に見立てることで、 ガ ウ こを2次元平面上の1点として捉えることができる。この平面を複素(数)平面ないしGauss 平面と呼ぶ。 一方、ある複素数zを、二つの実数r,e(ただしr>0に制限す る)を用いて Im ミ=ree という形で表わしたものを:の極形式表示と呼ぶ。e の逆数は -1 Im:=rin 1 で定義する。 er Imz 問[]()r= |, tan @ = が成り立つことをそれぞれ示せ。 Rez (i) 逆数の定義に基づいて (e")= e-t0 であることを示せ。 Re Rez=r このようにこの絶対値であるrは複素平面における原点(0+ 0i) から、までの距離を表わし、0は原点とこを結ぶ線分が実軸となす 角を表わす。はarg z とも書き、偏角 (argument)(物理や工学で はしばしば位相(phase))と呼ぶ。原点の周りを一周しても同じ点 に戻ってくることから、0には 2x ラジアン= 360度の整数倍の不 定性がある。また、0+0iの偏角は定義されない。 図1 複素平面。 偏角と加法定理 絶対値が1の二つの複素数 Im 21= COs # +isin @, 2= cos #,+i sin @。 を考える。ここで0,,02 は実数とする。 問 [2]() 積22 を計算し、三角関数の加法定理とオイラーの公 式を用いて極形式表示に直せ。また、同様にして商z/zz = zi の極形式表示も求めよ。(i) 21,22の複素平面における表示を図2 とする。このとき、積」みと商z/を複素平面に図示せよ。 0.5 Re -10 -0.5 0.5 21= e,22= e であったから、小間 (i) のとくに積の方の結 果から、次の基本的な指数法則が成り立つことが理解できる: 基本的な指数法則 -0.5 実数,に対してelh el = e(h+h)が成り立つ。 図2 と2の複素平面における表示。 また、小間(i) の結果から、22= e' hを掛けることで」から偏 角がだけ反時計回り方向に回り(角度が+)、2で割ることで 2」から偏角はだけ時計回り方向に回る(-)ことが納得できる。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

問題1.3教えて頂きたいです。

4 第1章 術の 問題1.3 0でない整数 a,6,cに対して, 次が成り立つことを示せ。 1.2 約数と倍数 (1)a|bかつ6|a → a=D±6. まず、約数と倍数の定義の復習から始めよう。 (2) a|bかつ6|c → a|c. (3) a|b → ac| bc. 定義1.1 整数a,6に対して、6 = acとなる整数cが存在するとき、 「aはbを割り切る」または 「bはaで割り切れる」 と言い。 a|bと表す。また、aをもの約数 (divisor) と呼び, bをaの 倍数(multiple)と呼ぶ. 一方, aが6を割り切らないときは, atbと表す。 定義1.4 a1,…, an を整数とする。 (1) a1, ,an のすべてを割り切る整数を a1, an の公約数 と呼ぶ、また,最大公約数 GCD(a1,… … , an) を次で定義 する。 * あるiに対してa; +0であるとき, a1,……Qn の公約 数の中で最大のものを GCD(a1,.….,an)とする。 cd 単に約数や倍数と言うときは負の整数も考えていることに注意す る。例えば,6の約数は±1, ±2, ±3, ±6の8個である.ESYe ●GCD(0, ,0) 3D0. 特に,整数 a,bに対して GCD(a,6) = 1 であるとき, a ともは互いに素であると言う。 命題1.2 (1)任意の整数aに対し, ±1 と±aはaの約数である。 (2) 1の約数は+1の二つのみである。 (3) 任意の整数は0の約数であり, 0の倍数は0のみである。 (2) a1, ,a, のすべてで割り切れる整数を a1, an の公倍 数と呼ぶ、また, 最小公倍数 LCM(aj, . ., an) を次で定 の 義する。 [証明明(1) e== +1 とおくと,e.ea=D aであるから, eと eaは *すべてのiに対して a; + 0であるとき, a1,, an の aの約数である。 る正の公倍数の中で最小のものを LCM(a1,.., an) とす 会 (2) aを1の約数とし, ac=1をみたす整数cを取れば、 る。 上い * あるiに対して a;=0であるとき, LCM(a1, .… , an)=0. 1= {ac| = |a||e| >_a|>1. 従って、a = 1, 即ち, a=±1 である。 (3) 任意の整数aに対してa-0=0であること(命題 8.3(1) を 参照)から(3) が従う。 (agad+ ( + + キ ロ 5) GCD はgreatest common divisor の略。 6) LCM は 1east common multiple の略。

未解決 回答数: 1
数学 大学生・専門学校生・社会人

問題としてはこのURLのやつでexercise2.2.9の問題です。 2.2.9. Define T : ℓ^2(Zn ) → ℓ^2(Zn ) by (T(z))(n) =z(n + 1) − z(n). Find all eigenvalues of T.... 続きを読む

16:22マ l 全 の Exerc: 164/520 matrices, convolution operators, and Fourier r operators. 2.2.9. Define T:l'(Zn) - → e°(ZN) by ニ Find all eigenvalues of T. 2.2.10. Let T(m):e'(Z4) → '(Z) be the Fourier multipliei (mz)' where m = (1,0, i, -2) defined by T (m)(2) = i. Find be l(Z4) such that T(m) is the convolutior Tb (defined by Th(Z) = b*z). ii. Find the matrix that represents T(m) with resp standard basis. 2.2.11. i. Suppose Ti, T2:l(ZN) → e(ZN) are tra invariant linear transformations. Prove that th sition T, o T, is translation invariant. ii. Suppose A and B are circulant NxN matric directly (i.e., just using the definition of a matrix, not using Theorem 2.19) that AB is Show that this result and Theorem 2.19 imp Hint: Write out the (m + 1,n+1) entry of the definition of matrix multiplication; compare hint to Exercise 2.2.12 (i). iii. Suppose b,, bz e l'(Zn). Prove that the cor Tb, o Tb, of the convolution operators Tb, and convolution operator T, with b = 2 bz * b.. E Exercise 2.2.6. iv. Suppose m,, mz € l"(Z). Prove that the cor T(m2) ° T(m) and T(m) is the Fourier multiplier operator T) m(n) = m2(n)m」(n) for all n. v. Suppose Ti, T2:l"(Zw) → e'(Zn) are linear tra tions. Prove that if Ti is represented bya matri respect to the Fourier basis F (i.e., [T; (z)]F =A Tz is represented by a matrix Az with respect t the composition T20T, is represented by the ma with respect to F. Deduce part i again. Remark:ByTheerem 2.19, we have just proved of the Fourier multiplier operat Aresearchgate.net - 非公開

未解決 回答数: 1