学年

教科

質問の種類

数学 大学生・専門学校生・社会人

一次関数応用です! 第4問の4がわかりません!解説お願いします🙇

2 d 1日)たかしさんとけんとさんは、学校から公園まで一直線の道をランニングすることにしまし 第 に。午前9時にたかしさんが先に学校を出発し、 その6分後にけんとさんも学校を出発しました。 たかしさんは,途中までは一定の速さでランニングし続けていましたが, ある地点からはランニング の,それまでの半分の速さで公園まで歩き続けました。けんとさんは, ランニングの途中に1回だ リトち止まって休憩し, 再び、休憩する前と同じ速さで公園までランニングし続けました。午前9時45 分に2人は同時に公園に到着しました。 14 トの図は,たかしさんが学校を出発してからx分後の, 2人の間の距離をymとして, xとyの関係 をグラフに表したものです。 あとの1~4の問いに答えなさい。 y (m) 096 98 23 13 20 23 45 x (分) 0 9 98 けんとさんは, 学校を出発してから公園に到着するまでに, 何分間ランニングをしていましたか。 学校から公園までの距離は何mですか。 3 けんとさんが休憩しているときのyをxの式で表しなさい。 2人の間の距離が1000mとなるときが全部で2回あります。2回目は1回目から何分後ですか。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

この問題の右側にある図の中でなんでBEとECが2yになるのかわかりません。誰か教えてください

方べきの定理, CHECK2 CHECK3 難易度 CHECK I 元気カアップ問題 111 AB= 8, BC=7, CA=6の△ ABCとその 外接円がある。 <Aの二等分線は△ABC の内心Iを通り, これがBCと交わる点をD, 外接円と交わる点をEとおく。 (1)線分 AD とDE の長さを求めよ。 (2)線分 IEの長さを求めよ。 JI B D C E ピントリ(1) AD=x, DE=yとおくと, BE= EC=2yとなるので, 方べきの 二等辺三 定理とトレミーの定理が使えるんだね。 (2) は△ECI に注目して, これ; 角形であることを示せば, 答えは簡単に求まるんだね。 頑張ろう ! 解答&解説 ココがポイント (1) AB= 8.BC= 7, CA=6の△ABC のZAの 二等分線が辺 BC と交わる点を Dとおくと, 頂角の二等分線の定理より, 8 6 D 3 BD:DC= AB:AC=8:6=4:3となる。 B y ここで, BC=7 より 比ではなく, 本当の 長さが4と3になる。 E BD= 4, DC=3となる。 ここで, AD=x, DE=yとおくと, 四角形 ABEC は円に内接するので, 方べきの 定理より,x·y=4·3 *xy= 12 ………①となる。 次に△BCE について, 同じ弧に対する円周角は B 等しいので, E Z BAE= Z BCE, Z EAC=D Z EBC 弧BEに対する (狐ECに対する円周角 よって, Z BAE=ZEACより, Z BCE= ZEBC となるので, △BCE は BE=CEの二等辺三角形 である。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

この問題の右側にある図の中でなんでBEとECが2yになるのかわかりません。誰か教えてください

方べきの定理, CHECK2 CHECK3 難易度 CHECK I 元気カアップ問題 111 AB= 8, BC=7, CA=6の△ ABCとその 外接円がある。 <Aの二等分線は△ABC の内心Iを通り, これがBCと交わる点をD, 外接円と交わる点をEとおく。 (1)線分 AD とDE の長さを求めよ。 (2)線分 IEの長さを求めよ。 JI B D C E ピントリ(1) AD=x, DE=yとおくと, BE= EC=2yとなるので, 方べきの 二等辺三 定理とトレミーの定理が使えるんだね。 (2) は△ECI に注目して, これ; 角形であることを示せば, 答えは簡単に求まるんだね。 頑張ろう ! 解答&解説 ココがポイント (1) AB= 8.BC= 7, CA=6の△ABC のZAの 二等分線が辺 BC と交わる点を Dとおくと, 頂角の二等分線の定理より, 8 6 D 3 BD:DC= AB:AC=8:6=4:3となる。 B y ここで, BC=7 より 比ではなく, 本当の 長さが4と3になる。 E BD= 4, DC=3となる。 ここで, AD=x, DE=yとおくと, 四角形 ABEC は円に内接するので, 方べきの 定理より,x·y=4·3 *xy= 12 ………①となる。 次に△BCE について, 同じ弧に対する円周角は B 等しいので, E Z BAE= Z BCE, Z EAC=D Z EBC 弧BEに対する (狐ECに対する円周角 よって, Z BAE=ZEACより, Z BCE= ZEBC となるので, △BCE は BE=CEの二等辺三角形 である。

回答募集中 回答数: 0