学年

教科

質問の種類

数学 大学生・専門学校生・社会人

A5の問題の答え教えていただきたいです!

(報告・発表の場合は各間途中計算 or 証明 or 引用を明記のこと 答のみの答案は評価しません) A1. 次の式や値を((1) f(x) 以外は関数を用いずに)できるだけ簡単な形で表せ: 1 (0) Sin1 A + Cos-14 (1) f(x)= tan's +1 (2) 210g33log2 ただし対数の底は共に1でない等しい任意の正の数. Cos-¹ (3-10882) (3) (5) Sin' (sin 2) (4) f(x)= x log x log |x| Exercises A (Tan-¹x)² Tan-1 A2. 与えられた関数f(x) の(最も広い) 定義域を求め,次にf(x) をできるだけ簡単な形で表せ. 以上にもとづき y=f(x)のグラフを描け. ただし対数の底は共に1でない等しい正の数. sin² I (1) f(x)= (2) f(x) = √√x² + (√=x)² (3) f(x)= sin x (6) Tan' (tan 3) 1 A4. f(x)= log2 う A3. 関数 f(x)=log3 | |, g(x)=3 について,次の問いに答えよ. (1) f(x) および 合成関数 (fof) (z) の (最も広い) 定義域をそれぞれ求めよ. (2) 合成関数 ( fog) (z) と (gof) (z) をそれぞれできるだけ簡単な形で表せ. (4) - log₂ log2 √√√√₂ (7) Cos-' (cos 4 ) | y = Tan'sのグラフはテキスト p.33 図 3.8 を引用するとよい ] 2² - 2-* 1 + x g(x) 1- x 2 +2- (1) f(x) およびg(z) の(最も広い) 定義域をそれぞれ求めよ. (2) 合成関数 (fog) (z) をできるだけ簡単な形で表せ. (3) 合成関数 (g of) (z) をできるだけ簡単な形で表せ. K = cos2 (Tan-12 ) = (1) f(-x) = f(x), g(-x) = −g(x) (3) f(x+1)=2f(z) (5) f(2x) =1+f(z) について,次の問いに答えよ. A5. 次の性質をもつ関数の例をそれぞれ1つずつ挙げよ. ただしf(x),g(x) は定数 (関数) ではないものとする. (2) ƒ(²-) = −ƒ(2), g(=) = 9(2) (4) f(x+1)=f(x) (6)# ƒ(2x) = f(x)

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

A1(1)~(7)教えて欲しいです!

(報告・発表の場合は各間途中計算 or 証明 or 引用を明記のこと 答のみの答案は評価しません) A1. 次の式や値を((1) f(x) 以外は関数を用いずに)できるだけ簡単な形で表せ: 1 (0) Sin1 A + Cos-14 (1) f(x)= tan's +1 (2) 210g33log2 ただし対数の底は共に1でない等しい任意の正の数. Cos-¹ (3-10882) (3) (5) Sin' (sin 2) (4) f(x)= x log x log |x| Exercises A (Tan-¹x)² Tan-1 A2. 与えられた関数f(x) の(最も広い) 定義域を求め,次にf(x) をできるだけ簡単な形で表せ. 以上にもとづき y=f(x)のグラフを描け. ただし対数の底は共に1でない等しい正の数. sin² I (1) f(x)= (2) f(x) = √√x² + (√=x)² (3) f(x)= sin x (6) Tan' (tan 3) 1 A4. f(x)= log2 う A3. 関数 f(x)=log3 | |, g(x)=3 について,次の問いに答えよ. (1) f(x) および 合成関数 (fof) (z) の (最も広い) 定義域をそれぞれ求めよ. (2) 合成関数 ( fog) (z) と (gof) (z) をそれぞれできるだけ簡単な形で表せ. (4) - log₂ log2 √√√√₂ (7) Cos-' (cos 4 ) | y = Tan'sのグラフはテキスト p.33 図 3.8 を引用するとよい ] 2² - 2-* 1 + x g(x) 1- x 2 +2- (1) f(x) およびg(z) の(最も広い) 定義域をそれぞれ求めよ. (2) 合成関数 (fog) (z) をできるだけ簡単な形で表せ. (3) 合成関数 (g of) (z) をできるだけ簡単な形で表せ. K = cos2 (Tan-12 ) = (1) f(-x) = f(x), g(-x) = −g(x) (3) f(x+1)=2f(z) (5) f(2x) =1+f(z) について,次の問いに答えよ. A5. 次の性質をもつ関数の例をそれぞれ1つずつ挙げよ. ただしf(x),g(x) は定数 (関数) ではないものとする. (2) ƒ(²-) = −ƒ(2), g(=) = 9(2) (4) f(x+1)=f(x) (6)# ƒ(2x) = f(x)

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

2解の切り取る線分の長さを考える事でこの問題を解くことはできないんでしょうか?

89 不等式を満たす整数 ■条件を満たす定数aの値の範囲を求めよ. [x2+2x-15>0 ......① 1x²-(a+1)x+a<0.2 する. 2x²-3x+α<0 を満たす整数xがちょうど4個存在する. αと1との大小関係に着目し, 場合分けして調べる. 3 □ 軸は直線x=1/1より, その4個の整数は, 3 4 (i) a < 1 のとき,②'より, a<x<1 ①',②'より,不等式を 満たす整数xがちょうど 3個となるのは右の図の 場合である。 したがって, -9a-8 (ii) α=1のとき, ②'は解なしで不適 (ii) α>1 のとき, ②'より, 1<x<a ①′②′より 不等式を 満たす整数xがちょうど① 3個となるのは右の図の -5 場合である. したがって, 6<a≤7 軸は直線 4 を満たす整数xがちょうど3個存在 x2+2x-15>0 より, (x+5)(x-3)>0 したがって x<-5,3<x ...... ①' x2-(a+1)x+α<0より, (x-1)(x-α) < 0 ......2' 1' a よって, (i)~(i)より、 -9≤a<-8, f(x)=2x2-3x+α とおくと, 9 f(x)=2(x-3) ²-3 +a (1 8 -91-71-5]] 86 これらより, x = 22 より, f(x)<0 x= 3 2次不等式と から近い4つの整数. (01- x= 13 x (2) 1 ・a 1 34567 x 6<a ≤7 3 1 101 2 9 3 x 満たす整数xがちょうど4個と るのは右の図の場合である. 条件は, f(-2)=14+a≧0, f(-1)=5+a<0, f(2)=2+a<0, f(3)=9+a≥0 --- ICA *** (x-1)(x-a)<0 Vis Vaši lax 場合分けが必要 α=-9 でもxの範囲 は-9<x<-5とな り,x=-6, -7, -8 となる. 一方, α=-8 とす ると, -8<x<-5 より, x=-6, -7 となり不適. 3 軸はx= に注意する. 不等式を満たす整数等号の吟味をしっかりせよ (一定) 軸に近い整数4個 -14-9-2 a -5 x-3>0x2+(2a-3)x-4a+2<0 を同時に満たす整数xがただ1つ存 A fost t 第2

未解決 回答数: 1