学年

教科

質問の種類

数学 大学生・専門学校生・社会人

すごく困っています。誰か教えてほしいです。

「境界付き曲面」 レポートに提 出 下記の展開図を完成させると境 界付き曲面になるが、 その境界は いくつの円周で構成されているか を、完成図での角の集まり方を調 べることによって求めよ。 更に、 向きづけ可能性とオイラー数を計 算せよ。 また、円板を必要枚数縫 い付けて(純正) 曲面にしたと き、それは分類定理のどの(純 正) 曲面になるかを答えよ。 ※ワードで図を描くのはスキルが いるので、手書きの解答を写真撮 影してワードに画像添付するか、 画像ファイルをレポートに提出す るかしてもよい。 (1) a0bc0b*c*a* (角番号入 り) a102b3c405b*6c*7a*8 (2) ab0bc + c*Oa0 (角番号 入り) a1b203b4c5 + c*607a809 三角形2枚だけの展開図 (貼らな い辺なし) を、 全てリストアップ し、そのそれぞれの完成図を描 け。 但し、実質上同じ展開図は重複 して挙げないこと。 つまり、 展開 図を回転したり裏返したり2枚の 役割を交換したりして同じになる ものは同じ展開図であるし、 辺の ペアにつける名前 (アルファベッ ト) を変更したり、 矢印の向きを ペアで同時に反対にしたりしたも のも実質上同じである。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

教えてください。

次の図形の面積を求めよ。 ぎりみ 済 1 -7 cm の多(2) 5 は でい ケ/ ち 銀出く 144° 4.5 cm 15 cm (円周率を元とする。) -5 cm をとる。 右の図は,1辺の長さが6cmの正方形の内部に, 半径が6cmの円弧を 2つかいたものである。円周率を元として, 斜線部分の面積を求めよ。 2つの扇形の面積の和から, 正三三角形の面積をひくと求められる。 2 (考え方 華学端食の水 い の消の G-)+·+(G-) +G13)1 代 ⑥ の示 副事 と 単野残式平の玉O代や釜半 AB=25, BC=20, ZC=90° である△ABC において,右の 図のように頂点Cから辺 ABへ垂線 CD を引く。このとき, 次の の五 013。 問いに答えよ。 (1) 線分 CD の長さを求めよ。 3 A D 平のの人 200 三平方の定理から, ACの長さがわかり, △ABCの 面積を2通りに表すことによって CDが求められる。 また,三角形の相似を利用することもできる。 考え方 B O1 京 お (2) AACD と△BCD の面積の比を求めよ。サ更野8.1=3.V 考え方 2つの三角形の底辺を AD, BDとみると,高さは等しいので AD:BD を求める。 0 1020 30 【園関時3図番 (0 右の図は,底面の半径が9cm, 母線の長さが12 cmの円錐 である。円周率を元として,次の問いに答えよ。 (1) この円錐の体積を求めよ。 4 12 cm 9 cm 考え方 円錐や角錐の体積は -x(底面積)×(高さ)購画 す る 関囲群e (2) この円錐の表面積を求めよ。 考え方 展開図をかいて, 側面にあたる扇形の中心角を求める。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

複素数の問題です。 全て解いてほしいです。 特に問題4の解説をよろしくお願いします。

問 ■複素平面と極形式 題 複素数zは:=Rez+ i Imz と書くことができ、実部 Re z をx座標、虚部 Im:をy座標に見立てることで、 ガ ウ こを2次元平面上の1点として捉えることができる。この平面を複素(数)平面ないしGauss 平面と呼ぶ。 一方、ある複素数zを、二つの実数r,e(ただしr>0に制限す る)を用いて Im ミ=ree という形で表わしたものを:の極形式表示と呼ぶ。e の逆数は -1 Im:=rin 1 で定義する。 er Imz 問[]()r= |, tan @ = が成り立つことをそれぞれ示せ。 Rez (i) 逆数の定義に基づいて (e")= e-t0 であることを示せ。 Re Rez=r このようにこの絶対値であるrは複素平面における原点(0+ 0i) から、までの距離を表わし、0は原点とこを結ぶ線分が実軸となす 角を表わす。はarg z とも書き、偏角 (argument)(物理や工学で はしばしば位相(phase))と呼ぶ。原点の周りを一周しても同じ点 に戻ってくることから、0には 2x ラジアン= 360度の整数倍の不 定性がある。また、0+0iの偏角は定義されない。 図1 複素平面。 偏角と加法定理 絶対値が1の二つの複素数 Im 21= COs # +isin @, 2= cos #,+i sin @。 を考える。ここで0,,02 は実数とする。 問 [2]() 積22 を計算し、三角関数の加法定理とオイラーの公 式を用いて極形式表示に直せ。また、同様にして商z/zz = zi の極形式表示も求めよ。(i) 21,22の複素平面における表示を図2 とする。このとき、積」みと商z/を複素平面に図示せよ。 0.5 Re -10 -0.5 0.5 21= e,22= e であったから、小間 (i) のとくに積の方の結 果から、次の基本的な指数法則が成り立つことが理解できる: 基本的な指数法則 -0.5 実数,に対してelh el = e(h+h)が成り立つ。 図2 と2の複素平面における表示。 また、小間(i) の結果から、22= e' hを掛けることで」から偏 角がだけ反時計回り方向に回り(角度が+)、2で割ることで 2」から偏角はだけ時計回り方向に回る(-)ことが納得できる。

回答募集中 回答数: 0