学年

教科

質問の種類

数学 大学生・専門学校生・社会人

問題としてはこのURLのやつでexercise2.2.9の問題です。 2.2.9. Define T : ℓ^2(Zn ) → ℓ^2(Zn ) by (T(z))(n) =z(n + 1) − z(n). Find all eigenvalues of T.... 続きを読む

16:22マ l 全 の Exerc: 164/520 matrices, convolution operators, and Fourier r operators. 2.2.9. Define T:l'(Zn) - → e°(ZN) by ニ Find all eigenvalues of T. 2.2.10. Let T(m):e'(Z4) → '(Z) be the Fourier multipliei (mz)' where m = (1,0, i, -2) defined by T (m)(2) = i. Find be l(Z4) such that T(m) is the convolutior Tb (defined by Th(Z) = b*z). ii. Find the matrix that represents T(m) with resp standard basis. 2.2.11. i. Suppose Ti, T2:l(ZN) → e(ZN) are tra invariant linear transformations. Prove that th sition T, o T, is translation invariant. ii. Suppose A and B are circulant NxN matric directly (i.e., just using the definition of a matrix, not using Theorem 2.19) that AB is Show that this result and Theorem 2.19 imp Hint: Write out the (m + 1,n+1) entry of the definition of matrix multiplication; compare hint to Exercise 2.2.12 (i). iii. Suppose b,, bz e l'(Zn). Prove that the cor Tb, o Tb, of the convolution operators Tb, and convolution operator T, with b = 2 bz * b.. E Exercise 2.2.6. iv. Suppose m,, mz € l"(Z). Prove that the cor T(m2) ° T(m) and T(m) is the Fourier multiplier operator T) m(n) = m2(n)m」(n) for all n. v. Suppose Ti, T2:l"(Zw) → e'(Zn) are linear tra tions. Prove that if Ti is represented bya matri respect to the Fourier basis F (i.e., [T; (z)]F =A Tz is represented by a matrix Az with respect t the composition T20T, is represented by the ma with respect to F. Deduce part i again. Remark:ByTheerem 2.19, we have just proved of the Fourier multiplier operat Aresearchgate.net - 非公開

未解決 回答数: 1
数学 大学生・専門学校生・社会人

(3)がわからないです。 わかる方いたら教えてください

レポート作成上の注意: 1.名前と学籍番号を書くこと。(成績処理の都合) 2.ファイル名は「Report4」とするのが好ましい。(全角文字はバグの原因になる)(成績処理の都合) 3. 採点者が読みやすい文字で書くこと。(採点の都合) 4.問題文は書き写さない。可能な限り一枚の(明るい) pdf にまとめること。(pdf 以外は減点します)(採点の都合) 3 *3 -1<zS1のとき log(1 + z) = r となることが知られている。たとえばェ=1のとき 2 4 5 1 log 2 = 1- 2 1 1 3 4 となりェ=1/2のとき log3- log2 = log(1 + 1/2) = 1 2 3 4 5 となる。 課題、関数 f(z) = log(1 + z) を考える。 となることを数学的帰納法を用いて証明せよ。 fo) (0) (2) f(x)のェ=0におけるテイラー多項式 P,(r) = f(0) + f'(0)r + 2! n を求めよ。 n! (3) 0SS1とする。f(z) のn+1次の剰余項 Rn+1(x)を考える。テイラーの定理を用いて lim Ra+1(x) = 0 を示せ。ここでn+1次の剰余項 R+1(z) とはf(x) - P,(z) のことである。 補足:(3) の主張は、0冬ぉS1のとき f(z) = lim (P.(z) + Rn+1(r)) = lim P,(z) = f(0) + f(0)x+ 2! f"(O。 f)(0) n! 2→ となることを意味する。 注意:多くの参考文献では、f(z) のn次の剰余項 R,(z)(= f(z) - P,-1(z)を考えている。注意すること。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

わかる方教えてくださいお願いします。

レポート作成上の注意: 1.名前と学籍番号を書くこと。(成績処理の都合) 2.ファイル名は「Report4」とするのが好ましい。(全角文字はバグの原因になる)(成績処理の都合) 3. 採点者が読みやすい文字で書くこと。(採点の都合) 4.問題文は書き写さない。可能な限り一枚の(明るい) pdf にまとめること。(pdf 以外は減点します)(採点の都合) 3 *3 -1<zS1のとき log(1 + z) = r となることが知られている。たとえばェ=1のとき 2 4 5 1 log 2 = 1- 2 1 1 3 4 となりェ=1/2のとき log3- log2 = log(1 + 1/2) = 1 2 3 4 5 となる。 課題、関数 f(z) = log(1 + z) を考える。 となることを数学的帰納法を用いて証明せよ。 fo) (0) (2) f(x)のェ=0におけるテイラー多項式 P,(r) = f(0) + f'(0)r + 2! n を求めよ。 n! (3) 0SS1とする。f(z) のn+1次の剰余項 Rn+1(x)を考える。テイラーの定理を用いて lim Ra+1(x) = 0 を示せ。ここでn+1次の剰余項 R+1(z) とはf(x) - P,(z) のことである。 補足:(3) の主張は、0冬ぉS1のとき f(z) = lim (P.(z) + Rn+1(r)) = lim P,(z) = f(0) + f(0)x+ 2! f"(O。 f)(0) n! 2→ となることを意味する。 注意:多くの参考文献では、f(z) のn次の剰余項 R,(z)(= f(z) - P,-1(z)を考えている。注意すること。

回答募集中 回答数: 0