学年

教科

質問の種類

数学 大学生・専門学校生・社会人

後1週間後に受験を控えているのですが志望校の過去問の答えが公表されてなくて困ってます。赤本も出てないです。なのでできれば解答解説、せめて解答だけでも教えて下さい。お願いします。

aton [III] 原点をOとする座標平面において, 点 A(-3,0), 点B(3,0),点 C(0,4) を取り, 3点0, m B, Cを通る円をCl, 3点0, C, A を通る円を Ca とする。 また, 点Cを通る傾き mの直線をLと [I]次の問いに答えよ。 し,直線Lと円Cの交点で点Cと異なる点をP, 直線Lと円C2の交点で点Cと異なる点をQ ly T bno (1) =1+ V2i のとき, z-4ェ+ 7z- 92? +6z+1の値を求めよ。 e co とする。ただし,点Pは第1象限にあるものとする。 次の問いに答えよ。 (1)点P, Qの座標を mを用いて表せ。 ndsuodim (2) 等式 0 (2) 直線 AQ と直線 BP が平行であることを示せ。 (C) =+ bourlames o d 1 oleooog S f()d + S(1)de (3) 四角形 ABPQの面積 S(m) をmを用いて表せ。 を満たす関数」(a)を求めよ。 (4)点Pが第1象限にある範囲でmが変わるとき, S(m) の最大値を求めよ。 1 (3) +y2 +yS 3 エ-yと WーSという条件の下で, yー+2z の最大値を 求めよ。 (4) 自然数nがn回ずつ続いてできる数列1,2,2,3,3,3,4,4,4, 4, の第 2020項を求めよ。 her b h) be S h basora (5) さいころを5回投げるとき, 5つの出た目のうちの最小値が3, 最大値が5である確率を求 めよ。 [II ェ= cos 0 (0S0S2m) とする,関数f(0) = cos 40について, 次の問いに答えよ。 bgebne f odals t To o obm ha eb (1) ((0)をrの多項式 g(x) として表せ。 (2) -1SェS1において, 関数y%= g(x)のグラフの概形を描け。 (3) cos。 3m + coS 5m 7m の値を求めよ。 8 COS + cos + coS 8 (4) cos 3m 3m 5m 7ァ a COS と cos の値を求めよ。 8 8 8 COS COS COS 8 8 8 (5) 曲線y= g(z)とェ軸の正の部分で囲まれた図形の面積をSとするとき, Sの値を求めよ。 nebo nidn nantd b Md o o

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

これのやり方を忘れてしまいました。 解説付きで教えてください。

統計学 練習問題 第4回 記述統計の復習(3) 2013 年4月21 日 問1 ある会社では、健康診断の結果を利用して健康状況を測る指標のBMIを計算し、社員の健康管理を行っている。 BMIは(体重kg)/(身長m)?で計算される。例えば、身長172 cm、体重75 kg の人ならば、BMI は 75/1.72" = 25.35 となり、約 25.4となる。この会社では男性社員についてBMI の値に基づき、次の表のように解釈していた。 BMI 健康状態 17.6未満 やせすぎ 17.6 以上 19.8 未満||やせ気味 19.8以上 24.2未満|| 理想体重 24.2以上 26.4未満 26.4以上 過体重 肥満 企画部の17人、営業部の 29人、人事部の11人の男性社員のBMIを計算して、小数第2位を四捨五入した値を 使い、部署ごとに5数要約を求めたところ、次のようになった。 5数要約 企画部| 営業部人事部 最小値 19.3 17.0 17.0 第1四分位数 22.1 21,0 22.4 中央値 24.3 22.2 24.3 第3四分位数 最大値 26,4 26,0 25.7 31.0 27.1 30.9 []3つの部署の箱ひげ図として正しいものを、次の 0~0のうちから一つ選べ。 O の H 企画部 ト 著業部 人事部 人事部 H 16 18 20 22 24 26 28 30 32 BM 16 18 20 22 24 26 28 30 32 日M の の ト 富業部 H 富業部 日 人事部 人事部 16 1 20 22_24 26 2 30 32 BM 16 18 20 22 24,26 28 30 32 BM [2] 男性社員の健康状態に関して、3つの部署の状況を述べた記述の中で最も適切なものを、次のO~Oのうち から一つ選べ。 0中央値や最大値を見ると、営業部は、企画部や人事部に比べて BMIが低い傾向がある。 の3つの部署ともやせすぎの人がいる。 のやせすぎと肥満の人がいるのは人事部だけである。 の企画部と人事部において、中央値よりも数値が高い人は同じ人数である。 6 企画部と人事部の平均値は一致する。 (統計検定3級 2012)

解決済み 回答数: 1