学年

教科

質問の種類

化学 大学生・専門学校生・社会人

(3)(4)がわかりません

で一定に保ったまま kPaった。 合気体に気火花をさせたのち、容器のを 27°すると. とき 生成した水の % がしてい 容器はCkPa となった る。(H100.R=8.31×10 1.01×1051760mm K・mol). A:(70.4.0 30 (エ) 97.3730 (ア) 35 36 (エ) 70 (オ) (ア) 18 24 (エ) 30 95 324 物質の二 60. 連結球 気体の燃焼〉 に最も適 るものを,それぞれ下から選べ。 片側を閉したいガラス管の内部を水で満たし銀だめの中で倒立させた。 この水銀柱の異空部水蒸気で飽和させると、1気において, 水銀柱の高さ は 730mm であった。 270における水の飽和圧は (AkPaである。 27℃で、水素が圧力30 Paで詰められた耐性容 各積2,酸素が圧力 で詰められた耐圧容 3.0L) カコックスで連結されている。温度を 容積 を開けての気体をすると、気体の全圧 33 べてなくなった)ところでピストンを止めた (状態II)。その後,さらにピストンへの圧 力を下げた状態Ⅲ)。 飽和水蒸気圧は図2に示すように変化し, 60℃においては 0.20 × 10 Paである。 容器内の液体の体積は無視できるものとして,(1)~(4)に答えよ。 ただし、水素は水に溶解しないものとする。 (1),(3)の答えは有効数字2桁で記せ。 (R=8.3×10 Pa・L/(K・mol)) ピストン 飽和水蒸気圧 [×10Pa] 1.00- 0.90- 0.80- 0.70- 0.60- 0.50- 0.40- 0.30- 0.20- 0.10- 0.00- 0 10 20 30 40 50 60 70 80 90100 温度 [℃] 図2 気体、 液体 状態 I 状態ⅡI 状態Ⅲ 図1 DO 25 350 (オ)6775 ( 100 [17田大 改] 結球と体の圧力> 気体は を扱い 17°C 7°C 連結部分およ 1.0,C=1, N-140=16) AR=8.31×10° Pa・L/(m・K), 飽和水蒸気圧 とする。 また、 (1) 状態 I における容器内の体積を求めよ。 思考 (2) 状態 Iにおける容器内の体積を固定したまま、温度を上げた。 容器内の水がすべて 水蒸気に変化する温度 (液体の水がすべてなくなる温度)は,次の(a)~(e) のどの温度範 囲に含まれるか。 最も適当なものを一つ選べ。 (a) 60~70°C (b) 70-80°C (c) 80-90°C (3) 状態Ⅱにおける容器内の体積を求めよ。 (d)90~100℃ (e) 100℃以上 (4) 状態Ⅰから状態Ⅲへの変化によって, 容器内の圧力Pと体積Vの関係はどのよう に変化するか。 最も適当な図を次の (a)~(e)から一つ選べ。 天体の水の ものとす (a) V に示して で各にメタン32 いて、コックをしたれ には空気 コック A 容器 B (b) + II (c) (d) (e) Ⅱ 20% 11.52 れた。 30.0(L) に保ったを開き、 時間が経 容器内の人 燃焼 A, 器 P →P [19 防衛医大 〕 にした。この容器内の [Pa〕 を求めよ。 生成した 存在 のとする。 さらに を開いたまま 063 〈理想気体と実在気体〉 「このとき,①容 内を 在する液体の水の物質量 [mol] を求めよ。 に存在する水蒸気 [mo 量 容器B内を17 よび ②容器内に存 保っ 以下の文中の空欄 に入る当を語を記せ。 62. 〈混合気体の体積〉 [14 京都府医大 改〕 実在気体の理想体からのを指して れる。ここではhp (Parは体積 P の値がよく用 PT) はK)であ 物質量(mol 図1に示すような体積と温度を自由に変えることのできるピストン付き容器に 0.15molの水素と0.20molの水を入れ, 温度を60℃に保ち、ピストンに0.50×105 Pa の圧力をかけた。このとき,水は一部液体であった(状態Ⅰ)。 温度を一定に保ったまま, ピストンへの圧力をゆっくり下げ, 容器内の水がすべて水蒸気になった (液体の水がす とかが一定の条件 Z値の力依存 多くの実在気体では、Pを 俺から大きく と、乙はからんするさらにPを大き やがて するの値が いる 大きくしたときと するの エ ウ が現れるた が強 れるためで 名古

回答募集中 回答数: 0
化学 大学生・専門学校生・社会人

高分子の組成比率を求める問題なのですが、講義のスライドに載せられていた求め方が一貫性が無さすぎてどう解けばいいか分かりません。 3つのうちの1番上のもののAの比率の出し方、3つのうちの1番下のもののAの比率の出し方を解説していただきたいです。 2つ目が課題なのですが、これも... 続きを読む

5・2 ビニルポリマーの立体規則性の表示法 α 置換基 B-CH₂ n-ad () ベルヌーイ 確 ad (偶数) * ベルヌーイ 確 * triad isotactic, mm (I) heterotactic, mr (H) syndiotactic,rr (S) ++ (1-P)² 2P (1-P) dyad meso, (f) racemo,(s) tetrad立体規則性により周囲の環境が異なる P (1-P) pentad mmmm mmm mmmr ||||||||-2P(1-P) mmr H2P(1-P) b rmmr |||||||||-2 P³(1-P)² rmr P(1-P)² mmrm 2P(1-P) mrm P(1-P) b mmrr | 2P(1-P) rrm 2P(1-P) rmrm |||||| 2 P³(1-P) rrr ||||(1-8) rmrr ||||||||- 2P(1-P)³ mrrm rrrm |||||||-2P(1-P) 高分子合成化学 p.103 rrrr ||||||(1-P)* A B ポリ塩化 CI ポリイソブチレン CH Ħ CH3 H CH3 ビニリデン CH₂ C C C C C C I H CI H 01 CH3 H CH3 a b C (A=91 mol %) 164H 36H 54H 200 = 54 x:Aの mol %) 76H 120H ai a 3.8 3.6 63H (A=63 mol %) M 126H 130H a₁AAAA az BAAA(AAAB) 2 6(1-x) モル分率 as BAAB bi AABA(ABAA) ✗= (100-9)/100 = 0.91 bz BABA(ABAB) bs: AABB(BBAA) b: BABB(BBAB) C₁ ABA 左の共重合体の組成比を計 ABB(BBA)算せよ cs: BBB ||233H b領域の積分値の半分はA由来で、 半分はB由来 a: az as bi ba ba b C1 C2 C3 4 2 $ (ppm) 126/2 233 63+126/2 2x 2(1-x-y) 6(1-x)+2y 1.5ppmにピークを持つBのモル分率をy とすると、 b領域のBのモル分率は (1-x-y) 図5-15 塩化ビニリデン (A) - イソブチレン (B) 共重合体ならびに両単独 重合体の1H-NMR スペクトル (60 MHz S.Cl溶液 130°C) 16

回答募集中 回答数: 0
1/10